Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry

نویسندگان

  • Stephen T. Kreger
  • Justin W. Klein
  • Aida Abdul Rahim
  • Joseph J. Bos
چکیده

Luna recently demonstrated a novel optical phase-based algorithm for removing the adverse effects of fiber motion at frequencies far above the scan rate on high-resolution measurements of Rayleigh scatter using Optical Frequency Domain Reflectometry (OFDR) for static strain and temperature measurements. By comparing dynamic OFDR Rayleigh scatter measurements to a static reference, it is possible to extract the time-varying phase signal in real time. The same algorithm, applied to successive segments along an unbonded single mode fiber, is an effective means of monitoring the spatial distribution of high frequency optical phase perturbations caused by vibration and acoustic wave propagation in the fiber. We will discuss tradeoffs between scan speed, scan duration, range, spatial resolution, vibration sensitivity and vibration frequency range, provide measurement examples, predict limiting specifications for practical system performance based on current commercial OFDR products, and compare these limits to those of distributed acoustic sensing techniques based on Optical Time Doman Reflectometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Strain and Temperature Discrimination in Unaltered Polarization Maintaining Fiber

A Rayleigh scatter-based distributed measurement technique is presented in which strain and temperature discrimination is achieved using standard polarization maintaining fiber as the sensor. High-sensitivity Optical Frequency Domain Reflectometry is used to measure the scatter.

متن کامل

Simulation of Noise within Botda and Cotdr Systems to Study the Impact on Dynamic Sensing

Real-time structural health monitoring requires dynamic sensing of distributed strain and temperature. Brillouin Optical Time Domain Analysis (BOTDA) and Rayleigh Coherent Optical Time Domain Reflectometry (COTDR) are promising candidates to achieve dynamic sensing. A noise model with specific parametric simulation of independent laser and detector noise sources has been developed. Although ens...

متن کامل

A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various appli...

متن کامل

Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry.

A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-...

متن کامل

Dynamic strain distribution monitoring of 5.5 m CFRP blade using 5 m FBGs interrogated by optical frequency domain reflectometry

We have developed an optical frequency domain reflectometry (OFDR) system which is capable of conducting distributed strain measurements with a sampling rate of 150 Hz, a spatial resolution of less than 1 mm and a sensing range of 20 m. In this study, we applied this technique to monitor dynamic strain distributions along a 5.5 m helicopter blade structure with carbon fiber reinforced plastics ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015