Membrane Invaginations Reveal Cortical Sites that Pull on Mitotic Spindles in One-Cell C. elegans Embryos

نویسندگان

  • Stefanie Redemann
  • Jacques Pecreaux
  • Nathan W. Goehring
  • Khaled Khairy
  • Ernst H. K. Stelzer
  • Anthony A. Hyman
  • Jonathon Howard
چکیده

Asymmetric positioning of the mitotic spindle in C. elegans embryos is mediated by force-generating complexes that are anchored at the plasma membrane and that pull on microtubules growing out from the spindle poles. Although asymmetric distribution of the force generators is thought to underlie asymmetric positioning of the spindle, the number and location of the force generators has not been well defined. In particular, it has not been possible to visualize individual force generating events at the cortex. We discovered that perturbation of the acto-myosin cortex leads to the formation of long membrane invaginations that are pulled from the plasma membrane toward the spindle poles. Several lines of evidence show that the invaginations, which also occur in unperturbed embryos though at lower frequency, are pulled by the same force generators responsible for spindle positioning. Thus, the invaginations serve as a tool to localize the sites of force generation at the cortex and allow us to estimate a lower limit on the number of cortical force generators within the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos

BACKGROUND During metazoan development, cell diversity arises primarily from asymmetric cell divisions which are executed in two phases: segregation of cytoplasmic factors and positioning of the mitotic spindle - and hence the cleavage plane -relative to the axis of segregation. When polarized cells divide, spindle alignment probably occurs through the capture and subsequent shortening of astra...

متن کامل

RGS-7 Completes a Receptor-Independent Heterotrimeric G Protein Cycle to Asymmetrically Regulate Mitotic Spindle Positioning in C. elegans

Heterotrimeric G proteins promote microtubule forces that position mitotic spindles during asymmetric cell division in C. elegans embryos. While all previously studied G protein functions require activation by seven-transmembrane receptors, this function appears to be receptor independent. We found that mutating a regulator of G protein signaling, RGS-7, resulted in hyperasymmetric spindle move...

متن کامل

A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos.

S. cerevisiae Ipl1, Drosophila Aurora, and the mammalian centrosomal protein IAK-1 define a new subfamily of serine/threonine kinases that regulate chromosome segregation and mitotic spindle dynamics. Mutations in ipl1 and aurora result in the generation of severely aneuploid cells and, in the case of aurora, monopolar spindles arising from a failure in centrosome separation. Here we show that ...

متن کامل

Wnt-dependent spindle polarization in the early C. elegans embryo.

Correct orientation of the mitotic spindle is crucial for the proper segregation of localized determinants and the correct spatial organization of cells in early embryos. The cues dividing cells use to orient their mitotic spindles are currently the subject of intensive investigation in a number of model systems. One of the cues that cells use during spindle orientation is provided by component...

متن کامل

OOC-3, a novel putative transmembrane protein required for establishment of cortical domains and spindle orientation in the P(1) blastomere of C. elegans embryos.

Asymmetric cell divisions require the establishment of an axis of polarity, which is subsequently communicated to downstream events. During the asymmetric cell division of the P(1) blastomere in C. elegans, establishment of polarity depends on the establishment of anterior and posterior cortical domains, defined by the localization of the PAR proteins, followed by the orientation of the mitotic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010