Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naïve state
نویسندگان
چکیده
Derivation of human naïve cells in the ground state of pluripotency provides promising avenues for developmental biology studies and therapeutic manipulations. However, the molecular mechanisms involved in the establishment and maintenance of human naïve pluripotency remain poorly understood. Using the human inducible reprogramming system together with the 5iLAF naïve induction strategy, integrative analysis of transcriptional and epigenetic dynamics across the transition from human fibroblasts to naïve iPSCs revealed ordered waves of gene network activation sharing signatures with those found during embryonic development from late embryogenesis to pre-implantation stages. More importantly, Transcriptional analysis showed a significant transient reactivation of transcripts with 8-cell-stage-like characteristics in the late stage of reprogramming, suggesting transient activation of gene network with human zygotic genome activation (ZGA)-like signatures during the establishment of naïve pluripotency. Together, Dissecting the naïve reprogramming dynamics by integrative analysis improves the understanding of the molecular features involved in the generation of naïve pluripotency directly from somatic cells.
منابع مشابه
Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy
Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms. Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...
متن کاملI-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملEstablishment and the importance of chicken pluripotent stem cells and their role in vaccine production: review article
Chick embryos are a great historical research model in basic and applied sciences. Along with other animal models, avian and specifically chicken embryo has been attended, as well. Avian fertilized eggs as a natural bioreactor are an efficient tool for producing recombinant proteins and vaccines manufacturing. Due to the limitations of birds' eggs for viral replication, avian stem cells culture...
متن کاملسلولهای بنیادی چندتوان القا شده در پژوهش و درمان بیماریها: مقاله مروری
Differentiated cells can change to embryonic stem cells by reprograming. Generation of induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative and personalized medicine. iPSCs can self-renew and differentiate into many cell types. iPSC cells offer a potentially unlimited source for targeted differentiation. Through the expression of a set of transcription factors, iP...
متن کاملReactivation of the inactive X chromosome and post-transcriptional reprogramming of Xist in iPSCs.
Direct reprogramming of somatic cells to pluripotent stem cells entails the obliteration of somatic cell memory and the reestablishment of epigenetic events. Induced pluripotent stem cells (iPSCs) have been created by reprogramming somatic cells through the transduction of reprogramming factors. During cell reprogramming, female somatic cells must overcome at least one more barrier than male so...
متن کامل