Glutamate transporters in neurologic disease.
نویسندگان
چکیده
The neurotoxic properties of glutamate were first demonstrated in 1957 by Lucas and Newhouse, who showed that systemic administration of glutamate to infant mice caused retinal degeneration. Over the last 4 decades, a direct correlation between the neuroexcitatory and neurotoxic properties of glutamate has been linked to activation of excitatory amino acid receptors. This overactivation leads to an enzymatic cascade of events ultimately resulting in cell death. Regulation of synaptic transmission and glutamate levels in the synaptic cleft is performed by glutamate transporters. Glutamate transport is a sodiumand potassium-coupled process that is capable of concentrating intracellular glutamate up to 10000-fold compared with the extracellular space. These transporters are located throughout the human central nervous system as well as other tissues. Recent physiologic studies provide evidence that glutamate transporters keep synaptic concentrations of glutamate low enough to prevent receptor desensitization and/or excitotoxicity. New insights into the biology of these transporters suggest that their dysfunction may contribute to neurologic disease.
منابع مشابه
Study on the effect of neuroprotective prolonged and intermittent normobaric hyperoxia on serum level of TNF-α and glutamate transporters expression in rat brain
Introduction: Prolonged and intermittent oxygen pre-exposure is associated with protection against ischemic reperfusion (IR) injury. In the current study, attempts were made to investigate the relationship between exposure to prolonged and intermittent normobaric hyperoxia (NBHO) and expression of excitatory amino acids transporters (EAATs) and TNF-α level. Method: Rats were divided into fo...
متن کاملIonotropic Glutamate Receptors and their Role in Neurological Diseases
Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...
متن کاملEstrogen and progesterone attenuate glutamate neurotoxicity via regulation of EAAT3 and GLT-1 in a rat model of ischemic stroke
Objective(s): Glutamate is the most widespread neurotransmitter in the central nervous system and has several functions as a neuromodulator in the brain although in pathological conditions like ischemia it is excessively released causing cell death. Under physiological conditions, glutamate is rapidly scavenged from the synaptic cleft by excitatory amino-acid transport...
متن کاملIncreased expression and function of glutamate transporters in multiple sclerosis.
Recent studies have shown that glutamate excitotoxicity may be a component in the etiology of multiple sclerosis (MS). Glutamate transporters determine the levels of extracellular glutamate and are essential to prevent excitotoxicity. We have analyzed here the expression of the glutamate transporters EAAT1, EAAT2 and EAAT3 in control and in MS optic nerve samples. We observed an overall increas...
متن کاملRegulation of glutamate transporter trafficking by Nedd4-2 in a Parkinson's disease model
Glutamate transporters play a key role in glutamate clearance and protect the central nervous system from glutamate excitotoxicity. Dysfunctional glutamate transporters contribute to the pathogenesis of Parkinson's disease (PD); however, the mechanisms that underlie the regulation of glutamate transporters in PD are still not well characterized. Here we report that Nedd4-2 mediates the ubiquiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Archives of neurology
دوره 58 3 شماره
صفحات -
تاریخ انتشار 2001