Cadherin gene expression and effects of Bt resistance on sperm transfer in pink bollworm.
نویسندگان
چکیده
Cadherin proteins bind Bacillus thuringiensis (Bt) toxins in lepidopteran midguts but their inherent function remains unclear. In pink bollworm, Pectinophora gossypiella, three recessive mutations in a cadherin gene (BtR) are tightly linked with resistance to Bt toxin Cry1Ac. Here we examined patterns of transcription of this gene and the association between cadherin genotype and sperm transfer in pink bollworm. Cadherin RNA was most abundant in larvae, but was also found in adults and embryos. In fourth instar larvae, cadherin RNA was most abundant in the gut, yet its presence in the testes indicates a potential role in sperm production. Previously, we found reduced first-male paternity in pink bollworm males homozygous for cadherin mutations conferring resistance to Bt, when a resistant and susceptible male competed for access to a female. However, the number of offspring sired by resistant and susceptible males was similar without competition. Male Lepidoptera produce both fertile eupyrene sperm and anucleate, non-fertile apyrene sperm, suggesting that apyrene sperm may contribute to male reproductive success when sperm competition occurs. Accordingly, we hypothesized that cadherin-based resistance to Bt entails fitness costs that reduce apyrene sperm transfer. To test this hypothesis, we compared apyrene and eupyrene sperm transfer in males from four strains of pink bollworm. Transfer of apyrene and eupyrene sperm was lower in homozygous resistant than in susceptible males. Furthermore, homozygous resistant males weighed less than susceptible males, which could have diminished sperm transfer by resistant males directly, or via a positive association between male weight, spermatophore weight and sperm transfer. While data suggest that cadherin mutations induced a recessive fitness cost affecting apyrene sperm transfer, these mutations also generated recessive costs that affected other traits and could have lowered first-male paternity.
منابع مشابه
Similar Genetic Basis of Resistance to Bt Toxin Cry1Ac in Boll-Selected and Diet-Selected Strains of Pink Bollworm
Genetically engineered cotton and corn plants producing insecticidal Bacillus thuringiensis (Bt) toxins kill some key insect pests. Yet, evolution of resistance by pests threatens long-term insect control by these transgenic Bt crops. We compared the genetic basis of resistance to Bt toxin Cry1Ac in two independently derived, laboratory-selected strains of a major cotton pest, the pink bollworm...
متن کاملAlternative Splicing and Highly Variable Cadherin Transcripts Associated with Field-Evolved Resistance of Pink Bollworm to Bt Cotton in India
Evolution of resistance by insect pests can reduce the benefits of insecticidal proteins from Bacillus thuringiensis (Bt) that are used extensively in sprays and transgenic crops. Despite considerable knowledge of the genes conferring insect resistance to Bt toxins in laboratory-selected strains and in field populations exposed to Bt sprays, understanding of the genetic basis of field-evolved r...
متن کاملNovel Pink Bollworm Resistance to the Bt Toxin Cry 1Ac: Effects on Mating, Oviposition, Larval Development and Survival
Bt cotton plants are genetically engineered to produce insecticidal toxins from the Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) bacterium and target key lepidopteran pests. In all previous strains of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) selected in the laboratory for resistance to insecticidal Cry1Ac toxin using an artificial diet cont...
متن کاملThree cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm.
Evolution of resistance by pests is the main threat to long-term insect control by transgenic crops that produce Bacillus thuringiensis (Bt) toxins. Because inheritance of resistance to the Bt toxins in transgenic crops is typically recessive, DNA-based screening for resistance alleles in heterozygotes is potentially much more efficient than detection of resistant homozygotes with bioassays. Su...
متن کاملINSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT Effects of Pink Bollworm Resistance to Bacillus thuringiensis on Phenoloxidase Activity and Susceptibility to Entomopathogenic Nematodes
Widespread planting of crops genetically engineered to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) imposes selection on many key agricultural pests to evolve resistance to Bt. Fitness costs can slow the evolution of Bt resistance. We examined effects of entomopathogenic nematodes on Þtness costs of Bt resistance in the pink bollworm, Pectinophora gossypiella (Saun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of insect physiology
دوره 55 11 شماره
صفحات -
تاریخ انتشار 2009