Tank treading of optically trapped red blood cells in shear flow.

نویسندگان

  • Himanish Basu
  • Aditya K Dharmadhikari
  • Jayashree A Dharmadhikari
  • Shobhona Sharma
  • Deepak Mathur
چکیده

Tank-treading (TT) motion is established in optically trapped, live red blood cells (RBCs) held in shear flow and is systematically investigated under varying shear rates, temperature (affecting membrane viscosity), osmolarity (resulting in changes in RBC shape and cytoplasmic viscosity), and viscosity of the suspending medium. TT frequency is measured as a function of membrane and cytoplasmic viscosity, the former being four times more effective in altering TT frequency. TT frequency increases as membrane viscosity decreases, by as much as 10% over temperature changes of only 4°C at a shear rate of ∼43 s(-1). A threshold shear rate (1.5 ± 0.3 s(-1)) is observed below which the TT frequency drops to zero. TT motion is also observed in shape-engineered (spherical) RBCs and those with cholesterol-depleted membranes. The TT threshold is less evident in both cases but the TT frequency increases in the latter cells. Our findings indicate that TT motion is pervasive even in folded and deformed erythrocytes, conditions that occur when such erythrocytes flow through narrow capillaries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Biophotonic Study of Live, Flowing Red Blood Cells in an Optical Trap

We investigate the physics of an optically trapped red blood cell under physiological conditions. When a single, live red blood cell, is placed in an optical trap, the normal biconcave disk shaped cell is observed to undergo a folding action and thereby take up a rod like shape. If such an RBC has any shape anisotropies due to perturbation through malarial infection or hyperosmotic stress, it i...

متن کامل

Full dynamics of a red blood cell in shear flow.

At the cellular scale, blood fluidity and mass transport depend on the dynamics of red blood cells in blood flow, specifically on their deformation and orientation. These dynamics are governed by cellular rheological properties, such as internal viscosity and cytoskeleton elasticity. In diseases in which cell rheology is altered genetically or by parasitic invasion or by changes in the microenv...

متن کامل

Tank-treading and tumbling frequencies of capsules and red blood cells.

This study is motivated in part by the discrepancy that exists in the literature with regard to the dependence of the tank-treading frequency of red blood cells on the shear rate and suspending medium viscosity. Here we consider three-dimensional numerical simulations of deformable capsules of initially spherical and oblate spheroidal shapes and biconcave discoid representing the red blood cell...

متن کامل

Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling.

We develop a computationally efficient cytoskeleton-based continuum erythrocyte algorithm. The cytoskeleton is modeled as a two-dimensional elastic solid with comparable shearing and area-dilatation resistance that follows a material law (Skalak, R., A. Tozeren, R. P. Zarda, and S. Chien. 1973. Strain energy function of red blood cell membranes. Biophys. J. 13:245-264). Our modeling enforces th...

متن کامل

Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow.

A three-dimensional (3D) simulation study of the effect of inertia on the dynamics of vesicles and red blood cells (RBCs) has not been reported. Here, we developed a 3D model based on the front tracking method to investigate how inertia affects the dynamics of spherical/non-spherical vesicles and biconcave-shaped RBCs with the Reynolds number ranging from 0.1 to 10. The results showed that iner...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 101 7  شماره 

صفحات  -

تاریخ انتشار 2011