Algebraic Methods for Reducibility in Nowhere-Zero Flows
نویسنده
چکیده
We study reducibility for nowhere-zero flows. A reducibility proof typically consists of showing that some induced subgraphs cannot appear in a minimum counter-example to some conjecture. We derive algebraic proofs of reducibility. We define variables which in some sense count the number of nowhere-zero flows of certain type in a graph and then deduce equalities and inequalities that must hold for all graphs. We then show how to use these algebraic expressions to prove reducibility. In our case, these inequalities and equalities are linear. We can thus use the well developed theory of linear programming to obtain certificates of these proof. We make publicly available computer programs we wrote to generate the algebraic expressions and obtain the certificates.
منابع مشابه
Nowhere-zero flow polynomials
In this article we introduce the flow polynomial of a digraph and use it to study nowherezero flows from a commutative algebraic perspective. Using Hilbert’s Nullstellensatz, we establish a relation between nowhere-zero flows and dual flows. For planar graphs this gives a relation between nowhere-zero flows and flows of their planar duals. It also yields an appealing proof that every bridgeless...
متن کاملCubic Graphs without a Petersen Minor Have Nowhere–zero 5–flows
We show that every bridgeless cubic graph without a Petersen minor has a nowhere-zero 5-flow. This approximates the known 4-flow conjecture of Tutte. A graph has a nowhere-zero k-flow if its edges can be oriented and assigned nonzero elements of the group Zk so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph. An equivalent definition we get...
متن کاملOn flows in bidirected graphs
Bouchet conjectured that every bidirected graph which admits a nowhere-zero bidirected flow will admit a nowhere-zero bidirected 6-flow [A. Bouchet, Nowhere-zero integer flows on a bidirected graph, J. Combin. Theory Ser. B 34 (1983) 279–292]. He proved that this conjecture is true with 6 replaced by 216. Zyka proved in his Ph.D dissertation that it is true with 6 replaced by 30. Khelladi prove...
متن کاملForbidden graphs and group connectivity
Many researchers have devoted themselves to the study of nowhere-zero flows and group connectivity. Recently, Thomassen confirmed the weak 3-flow conjecture, which was further improved by Lovász, Thomassen, Wu and Zhang who proved that every 6-edge-connected graph is Z3-connected. However, Conjectures 1 and 2 are still open. Conjecture 2 implies Conjecture 1 by a result of Kochol that reduces C...
متن کاملNowhere-Zero 3-Flows in Squares of Graphs
It was conjectured by Tutte that every 4-edge-connected graph admits a nowherezero 3-flow. In this paper, we give a complete characterization of graphs whose squares admit nowhere-zero 3-flows and thus confirm Tutte’s 3-flow conjecture for the family of squares of graphs.
متن کامل