Scaling forms of particle densities for Lévy walks and strong anomalous diffusion.

نویسندگان

  • Marco Dentz
  • Tanguy Le Borgne
  • Daniel R Lester
  • Felipe P J de Barros
چکیده

We study the scaling behavior of particle densities for Lévy walks whose transition length r is coupled with the transition time t as |r|∝t^{α} with an exponent α>0. The transition-time distribution behaves as ψ(t)∝t^{-1-β} with β>0. For 1<β<2α and α≥1, particle displacements are characterized by a finite transition time and confinement to |r|q_{c}. These results give insight into the possible origins of strong anomalous diffusion and anomalous behaviors in disordered systems in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite densities for Lévy walks.

Motion of particles in many systems exhibits a mixture between periods of random diffusive-like events and ballistic-like motion. In many cases, such systems exhibit strong anomalous diffusion, where low-order moments 〈|x(t)|(q)〉 with q below a critical value q(c) exhibit diffusive scaling while for q>q(c) a ballistic scaling emerges. The mixed dynamics constitutes a theoretical challenge since...

متن کامل

Semistable Lévy Motion

Semistable Lévy motions have stationary independent increments with semistable distributions. They can be realized as scaling limits of simple random walks, extending the familiar Lévy motions. Generators of stable semigroups are fractional derivatives, and the semistable generators provide a new approximation to fractional derivatives. Semistable Lévy motions and semistable generators may be u...

متن کامل

Spectral Characterization of Anomalous Diffusion of a Periodic Piecewise Linear Intermittent Map

For a piecewise linear version of the periodic map with anomalous diffusion, the evolution of statistical averages of a class of observables with respect to piecewise constant initial densities is investigated and generalized eigenfunctions of the Frobenius-Perron operator are explicitly derived. The evolution of the averages is controlled by real eigenvalues as well as continuous spectra termi...

متن کامل

Navigation by anomalous random walks on complex networks

Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characteriz...

متن کامل

Self- and Transport Diffusion in Narrow Pores with Different Roughness

1. Introduction We study molecular diffusion in nanopores with different types of roughness in the Knudsen regime in d=2 and d=3. We show that the diffusion can be mapped onto Levy walks and discuss the roughness dependence of the diffusion coefficients D s and D t of self-and transport diffusion, respectively. We use scaling arguments and numerical simulations to understand how both types of d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 92 3  شماره 

صفحات  -

تاریخ انتشار 2015