Elastic properties and line tension of self-assembled bilayer membranes.
نویسندگان
چکیده
The elastic properties of a self-assembled bilayer membrane are studied using the self-consistent field theory, applied to a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents. Examining the free energy of bilayer membranes with different geometries allows us to calculate their bending modulus, Gaussian modulus, two fourth-order membrane moduli, and the line tension. The dependence of these parameters on the microscopic characteristics of the amphiphilic chain, characterized by the volume fraction of the hydrophilic component, is systematically studied. The theoretical predictions are compared with the results from a simple monolayer model, which approximates a bilayer membrane by two monolayers. The region of validity of the linear elasticity theory is analyzed by examining the higher-order contributions.
منابع مشابه
Elastic Properties and Line Tension of Self-Assembled Bilayer Membranes ELASTIC PROPERTIES AND LINE TENSION OF SELF-ASSEMBLED BILAYER MEMBRANES
The bending moduli and line tension of bilayer membranes self-assembled from diblock copolymers was calculated using the self-consistent field theory. The limitation of the linear elasticity theory (Helfrich model) was evaluated by calculating fourthorder curvature moduli in high curvature systems. It was found that in highly curved membranes, the fourth-order contributions to the bending energ...
متن کاملLine Tension of Multi - Component Bilayer Membranes ASHKAN
Submitted for the MAR14 Meeting of The American Physical Society Line Tension of Multi-Component Bilayer Membranes ASHKAN DEHGHAN, KYLE PASTOR, AN-CHANG SHI, McMaster University, THEORETICAL POLYMER PHYSICS TEAM—The line tension of self-assembled multicomponent bilayers is investigated using self-consistent field theory. The bilayer membranes are self-assembled from amphiphilic AB/ED diblock co...
متن کاملA Systematically Coarse-Grained Solvent-Free Model for Quantitative Phospholipid Bilayer Simulations
We present an implicit solvent coarse-grained (CG) model for quantitative simulations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. The absence of explicit solvent enables membrane simulations on large length and time scales at moderate computational expense. Despite improved computational efficiency, the model preserves chemical specificity and quantitative accuracy. The...
متن کاملComputer simulations of self-assembled membranes.
Molecular dynamics simulations in three dimensions of particles that self-assemble to form two-dimensional, membrane-like objects are presented. Anisotropic, multibody forces, chosen so as to mimic real interactions between amphiphilic molecules, generate a finite rigidity and compressibility of the assembled membranes, as well as a finite line tension at their free edges. This model and its ge...
متن کاملFictitious gauge fields in bilayer graphene
We discuss the effect of elastic deformations on the electronic properties of bilayer graphene membranes. Distortions of the lattice translate into fictitious gauge fields in the electronic Dirac Hamiltonian that are explicitly derived here for arbitrary elastic deformations, including in-plane as well as flexural (out-of-plane) distortions. We include gauge fields associated to intraas well as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2013