On Regularisation Parameter Transformation of Support Vector Machines

نویسندگان

  • Hong-Gunn Chew
  • Cheng-Chew Lim
  • C. C. LIM
چکیده

The Dual-nu Support Vector Machine (SVM) is an effective method in pattern recognition and target detection. It improves on the Dual-C SVM, and offers competitive performance in detection and computation with traditional classifiers. We show that the regularisation parameters Dual-nu and Dual-C can be set such that the same SVM solution is obtained. We present the process of determining the related parameters of one form from the solution of a trained SVM of the other form, and test the relationship with a digit recognition problem. The link between the Dual-nu and Dual-C parameters allows users to use Dual-nu for ease of training, and to switch between the two forms readily.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Model Selection for Support Vector Machines via Adaptive Step-Size Tabu Search

The generalisation properties of a support vector classi cation network are typically governed by a regularisation parameter, C, and a small number of parameters specifying the kernel function. The process by which the optimal values of these parameters are obtained is known as model selection. This paper describes an automated model selection procedure based on minimisation of an upper bound o...

متن کامل

STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES

Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008