Intracerebral transplantation of foetal neural stem cells improves brain dysfunction induced by intracerebral haemorrhage stroke in mice
نویسندگان
چکیده
Intracerebral haemorrhage (ICH) can lead to secondary insults and severe neurological deficits. Transplantation of neural stem cells (NSCs) was suggested as an alternative to improve ICH-induced neurological dysfunction. The present study aimed at investigating the therapeutic role and long-term survival of foetal NSCs and potential role of foetal NSCs-produced factors in ICH. Our results demonstrated that foetal NSCs could differentiate into neural axons and dendrites and astrocytes in both in vitro and in vivo conditions, demonstrated by positive double or triple staining with Hoechst, neuronal specific nuclear protein, neurofilaments and glial fibrillary acidic protein. Intracerebral transplantation of foetal NSCs 3 days after ICH induction by intrastriatal administration of bacterial collagenase could improve the functional performance in the limb-placing test and shorten the duration of the recovery from ICH-induced neural disorders. The foetal NSCs may also produce neurotrophic and/or neuroprotective factors during culture, because the culture medium alone could partially improve functional performance. Thus, our data suggest that the foetal NSCs may be one of the therapeutic candidates for ICH.
منابع مشابه
Comparison of intracerebral transplantation effects of different stem cells on rodent stroke models
In the present study, induced pluripotent stem cells (iPSCs), induced neural stem cells (iNSCs), mesenchymal stem cells (MSCs) and an immortalized cell line (RMNE6), representing different characteristics of stem cells, were transplanted into normal and/or injured brain areas of rodent stroke models, and their effects were compared to select suitable stem cells for cell replacement stroke thera...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملHuman neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage.
BACKGROUND AND PURPOSE Cell transplantation has been used to reduce behavioral deficit in cerebral ischemia. However, there is no report about cell transplantation in experimental intracerebral hemorrhage (ICH). We hypothesize that intravenously transplanted human neural stem cells (NSCs) can migrate and differentiate into neurons or glial cells, thereby improving functional outcome in ICH. M...
متن کاملAttenuation of reactive gliosis in stroke-injured mouse brain does not affect neurogenesis from grafted human iPSC-derived neural progenitors
Induced pluripotent stem cells (iPSCs) or their progeny, derived from human somatic cells, can give rise to functional improvements after intracerebral transplantation in animal models of stroke. Previous studies have indicated that reactive gliosis, which is associated with stroke, inhibits neurogenesis from both endogenous and grafted neural stem/progenitor cells (NSPCs) of rodent origin. Her...
متن کامل