Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation.
نویسندگان
چکیده
Strigolactones are signalling molecules playing a double role in the rhizosphere as host detection signals for arbuscular mycorrhizal (AM) fungi and root parasitic plants. They are biosynthetically originating from carotenoids. The biosynthesis of these signalling compounds is tightly regulated by environmental conditions such as nutrient availability, mainly phosphate (Pi). However, although it is known that limited-Pi conditions improve the production and/or exudation of strigolactones, there is no information concerning the effect of these conditions on the enzymes involved in strigolactone production. We have recently demonstrated that tomato is a good system to study the production and regulation of these important signalling compounds.1 In the present paper we describe an analysis of Pi starvation-induced changes in gene expression in tomato roots using a microarray study. The possible role of the upregulated genes in the biosynthesis of strigolactones and their relationship with carotenoids and the hormone abscisic acid (ABA) are discussed.
منابع مشابه
Impacts of strigolactone on shoot branching under phosphate starvation in chrysanthemum (Dendranthema grandiflorum cv. Jinba)
Chrysanthemum (Dendranthema grandiflorum cv. Jinba) shoot branching is determined by bud outgrowth during the vegetative growth stage. The degree of axillary bud outgrowth is highly influenced by environmental conditions, such as nutrient availability. Here, we demonstrated that phosphorus (Pi) starvation significantly reduces axillary bud outgrowth in chrysanthemum. A strigolactone (SL) biosyn...
متن کاملStrigolactone Regulates Anthocyanin Accumulation, Acid Phosphatases Production and Plant Growth under Low Phosphate Condition in Arabidopsis
Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi) in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL) signalin...
متن کاملStrigolactones are involved in root response to low phosphate conditions in Arabidopsis.
Strigolactones (SLs) are plant hormones that suppress lateral shoot branching, and act to regulate root hair elongation and lateral root formation. Here, we show that SLs are regulators of plant perception of or response to low inorganic phosphate (Pi) conditions. This regulation is mediated by MORE AXILLARY GROWTH2 (MAX2) and correlated with transcriptional induction of the auxin receptor TRAN...
متن کاملStrigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens.
In seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-β-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and C...
متن کاملStrigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.
Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant develo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant signaling & behavior
دوره 3 11 شماره
صفحات -
تاریخ انتشار 2008