Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis.
نویسندگان
چکیده
Thyroid hormone receptors (TRs) can repress or activate target genes depending on the absence or presence of thyroid hormone (T3), respectively. This hormone-dependent gene regulation is mediated by recruitment of co-repressors in the absence of T3 and coactivators in its presence. Many TR-interacting coactivators have been characterized in vitro. In comparison, few studies have addressed the developmental roles of these cofactors in vivo. We have investigated the role of coactivators in transcriptional activation by TR during postembryonic tissue remodeling by using amphibian metamorphosis as a model system. We have previously shown that steroid receptor coactivator 3 (SRC3) is expressed and upregulated during metamorphosis, suggesting a role in gene regulation by liganded TR. Here, we have generated transgenic tadpoles expressing a dominant negative form of SRC3 (F-dnSRC3). The transgenic tadpoles exhibited normal growth and development throughout embryogenesis and premetamorphic stages. However, transgenic expression of F-dnSRC3 inhibits essentially all aspects of T3-induced metamorphosis, as well as natural metamorphosis, leading to delayed or arrested metamorphosis or the formation of tailed frogs. Molecular analysis revealed that F-dnSRC3 functioned by blocking the recruitment of endogenous coactivators to T3 target genes without affecting corepressor release, thereby preventing the T3-dependent gene regulation program responsible for tissue transformations during metamorphosis. Our studies thus demonstrate that coactivator recruitment, aside from corepressor release, is required for T3 function in development and further provide the first example where a specific coactivator-dependent gene regulation pathway by a nuclear receptor has been shown to underlie specific developmental events.
منابع مشابه
SRC-p300 coactivator complex is required for thyroid hormone-induced amphibian metamorphosis.
Gene activation by the thyroid hormone (T3) receptor (TR) involves the recruitment of specific coactivator complexes to T3-responsive promoters. A large number of coactivators for TR have been isolated and characterized in vitro. However, their roles and functions in vivo during development have remained largely unknown. We have utilized metamorphosis in Xenopus laevis to study the role of thes...
متن کاملHigh-throughput sequencing will metamorphose the analysis of thyroid hormone receptor function during amphibian development.
Amphibian metamorphosis is marked by dramatic thyroid hormone (T(3))-induced changes including de novo morphogenesis, tissue remodeling, and organ resorption through programmed cell death. These changes involve cascades of gene regulation initiated by thyroid hormone (TH). TH functions by regulating gene expression through TH receptors (TR). TR are DNA-binding transcription factors that belong ...
متن کاملTissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development.
Numerous coactivators that bind nuclear hormone receptors have been isolated and characterized in vitro. Relatively few studies have addressed the developmental roles of these cofactors in vivo. By using the total dependence of amphibian metamorphosis on thyroid hormone (T3) as a model, we have investigated the role of steroid receptor coactivator 3 (SRC3) in gene activation by thyroid hormone ...
متن کاملNovel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis.
Protein arginine methyltransferase 1 (PRMT1) acts as a transcription coactivator for nuclear receptors through histone H4 R3 methylation. The in vivo function of PRMT1 is largely unknown. Here we investigated the role of PRMT1 in thyroid hormone (T3) receptor (TR)-mediated transcription in vivo during vertebrate development. By using intestinal remodeling during T3-dependent Xenopus laevis meta...
متن کاملNegative regulation by thyroid hormone receptor requires an intact coactivator-binding surface.
Thyroid hormone (TH) action is mediated by TH receptors (TRs), which are members of the nuclear hormone receptor superfamily. In vitro studies have demonstrated that TR activity is regulated by interactions with corepressor and coactivator proteins (CoRs and CoAs, respectively). TH stimulation is thought to involve dissociation of CoRs and recruitment of CoAs to the liganded TR. In contrast, ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 25 13 شماره
صفحات -
تاریخ انتشار 2005