The Complexity of Computing the Tutte Polynomial on Transversal Matroids

نویسندگان

  • Charles J. Colbourn
  • J. Scott Provan
  • Dirk L. Vertigan
چکیده

The complexity of computing the Tutte polynomial T(~/c,x,y) is determined for transversal matroid ,4s and algebraic numbers x and y. It is shown that for fixed x and y the problem of computing T(~,x,y) for JA a transversal matroid is ~pP-complete unless the numbers x and y satisfy (x 1)(y 1) = 1, in which case it is polynomial-time computable. In particular, the problem of counting bases in a transversal matroid, and of counting various types of "matchable" sets of nodes in a bipartite graph, is #P-complete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Complexity of Computing the Tutte Polynomial of Bicircular Matroids

We show that evaluating the Tutte polynomial for the class of bicircular matroids is #Phard at every point (x, y) except those in the hyperbola (x − 1)(y − 1) = 1 and possibly those on the lines x = 0 and x = −1. Since bicircular matroids form a rather restricted subclass of transversal matroids, our results can be seen as a partial strengthening of a result by Colbourn, Provan and Vertigan, na...

متن کامل

ar X iv : m at h / 04 10 42 5 v 1 [ m at h . C O ] 1 9 O ct 2 00 4 MULTI - PATH MATROIDS

We introduce the minor-closed, dual-closed class of multi-path matroids. We give a polynomial-time algorithm for computing the Tutte polynomial of a multi-path matroid, we describe their basis activities, and we prove some basic structural properties. Key elements of this work are two complementary perspectives we develop for these matroids: on the one hand, multi-path matroids are transversal ...

متن کامل

ar X iv : m at h . C O / 0 41 04 25 v 1 1 9 O ct 2 00 4 MULTI - PATH MATROIDS

We introduce the minor-closed, dual-closed class of multi-path matroids. We give a polynomial-time algorithm for computing the Tutte polynomial of a multi-path matroid, we describe their basis activities, and we prove some basic structural properties. Key elements of this work are two complementary perspectives we develop for these matroids: on the one hand, multi-path matroids are transversal ...

متن کامل

An Introduction to Transversal Matroids

1. Prefatory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Several Perspectives on Transversal Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Set systems, transversals, partial transversals, and Hall’s theorem . . . . . . . . 2 2.2. Transversal matroids via matrix encodings of set systems . . . . . ....

متن کامل

Lattice path matroids: enumerative aspects and Tutte polynomials

Fix two lattice paths P and Q from ð0; 0Þ to ðm; rÞ that use East and North steps with P never going above Q: We show that the lattice paths that go from ð0; 0Þ to ðm; rÞ and that remain in the region bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call a lattice path matroid. We consider a variety of enumerative aspects of these matroid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1995