Ancestry Inference in Complex Admixtures via Variable-Length Markov Chain Linkage Models

نویسندگان

  • Sivan Bercovici
  • Jesse M. Rodriguez
  • Megan Elmore
  • Serafim Batzoglou
چکیده

Inferring the ancestral origin of chromosomal segments in admixed individuals is key for genetic applications, ranging from analyzing population demographics and history, to mapping disease genes. Previous methods addressed ancestry inference by using either weak models of linkage disequilibrium, or large models that make explicit use of ancestral haplotypes. In this paper we introduce ALLOY, an efficient method that incorporates generalized, but highly expressive, linkage disequilibrium models. ALLOY applies a factorial hidden Markov model to capture the parallel process producing the maternal and paternal admixed haplotypes, and models the background linkage disequilibrium in the ancestral populations via an inhomogeneous variable-length Markov chain. We test ALLOY in a broad range of scenarios ranging from recent to ancient admixtures with up to four ancestral populations. We show that ALLOY outperforms the previous state of the art, and is robust to uncertainties in model parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple-Ancestor Localization for Recently Admixed Individuals

Inference of ancestry from genetic data is a fundamental problem in computational genetics, with wide applications in human genetics and population genetics. The treatment of ancestry as a continuum instead of a categorical trait has been recently advocated in the literature. Particularly, it was shown that a European individual’s geographic coordinates of origin can be determined up to a few h...

متن کامل

Fast and accurate inference of local ancestry in Latino populations

MOTIVATION It is becoming increasingly evident that the analysis of genotype data from recently admixed populations is providing important insights into medical genetics and population history. Such analyses have been used to identify novel disease loci, to understand recombination rate variation and to detect recent selection events. The utility of such studies crucially depends on accurate an...

متن کامل

On the Inference of Ancestries in Admixed Populations

Inference of ancestral information in recently admixed populations, in which every individual is composed of a mixed ancestry (e.g., African Americans in the United States), is a challenging problem. Several previous model-based approaches to admixture have been based on hidden Markov models (HMMs) and Markov hidden Markov models (MHMMs). We present an augmented form of these models that can be...

متن کامل

Segregated Graphs and Marginals of Chain Graph Models

Bayesian networks are a popular representation of asymmetric (for example causal) relationships between random variables. Markov random fields (MRFs) are a complementary model of symmetric relationships used in computer vision, spatial modeling, and social and gene expression networks. A chain graph model under the Lauritzen-Wermuth-Frydenberg interpretation (hereafter a chain graph model) gene...

متن کامل

Local Ancestry Inference in Admixed Populations

Contemporary human sub-populations exhibit great differences in the frequency of various alleles, or the set of variations of a particular gene. Advances in genome sequencing have rapidly improved speed, cost, and accuracy, allowing unprecedented opportunity to map the functionality and location of such genetic variation. Of particular interest is the mapping of disease associated loci in the g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational biology : a journal of computational molecular cell biology

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2012