Kink Casimir energy in a lattice sine-Gordon model.

نویسنده

  • Speight
چکیده

The Casimir energy of quantum fluctuations about the classical kink configuration is computed numerically in the weak coupling approximation for a recently proposed lattice sineGordon model. This energy depends periodically on the kink position and is found to be approximately sinusoidal. PACS classification numbers: 03.65.Sq, 11.10.Lm, 63.10.+a.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Kink Casimir Energy in a Lattice Sine

The Casimir energy of quantum uctuations about the classical kink connguration is computed numerically in the weak coupling approximation for a recently proposed lattice sine-Gordon model. This energy depends periodically on the kink position and is found to be approximately sinusoidal.

متن کامل

The Kink Casimir Energy in a Lattice Sine-Gordon Model

The Casimir energy of quantum fluctuations about the classical kink configuration is computed numerically in the weak coupling approximation for a recently proposed lattice sineGordon model. This energy depends periodically on the kink position and is found to be approximately sinusoidal. PACS classification numbers: 03.65.Sq, 11.10.Lm, 63.10.+a.

متن کامل

0 Dynamics of lattice kinks

We consider a class of Hamiltonian nonlinear wave equations governing a field defined on a spatially discrete one dimensional lattice, with discreteness parameter, d = h −1 , where h > 0 is the lattice spacing. The specific cases we consider in detail are the discrete sine-Gordon (SG) and discrete φ 4 models. For finite d and in the continuum limit (d → ∞) these equations have static kink-like ...

متن کامل

F Ur Mathematik in Den Naturwissenschaften Leipzig Topological Discrete Kinks Topological Discrete Kinks

A spatially discrete version of the general kink-bearing nonlinear Klein-Gordon model in (1 + 1) dimensions is constructed which preserves the topological lower bound on kink energy. It is proved that, provided the lattice spacing h is suuciently small, there exist static kink solutions attaining this lower bound centred anywhere relative to the spatial lattice. Hence there is no Peierls-Nabarr...

متن کامل

Topological discrete kinks

A spatially discrete version of the general kink-bearing nonlinear Klein-Gordon model in (1 + 1) dimensions is constructed which preserves the topological lower bound on kink energy. It is proved that, provided the lattice spacing h is sufficiently small, there exist static kink solutions attaining this lower bound centred anywhere relative to the spatial lattice. Hence there is no Peierls-Naba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. D, Particles and fields

دوره 49 12  شماره 

صفحات  -

تاریخ انتشار 1994