α-Synuclein negatively regulates protein kinase Cδ expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity.

نویسندگان

  • Huajun Jin
  • Arthi Kanthasamy
  • Anamitra Ghosh
  • Yongjie Yang
  • Vellareddy Anantharam
  • Anumantha G Kanthasamy
چکیده

We recently demonstrated that protein kinase Cδ (PKCδ), an important member of the novel PKC family, is a key oxidative stress-sensitive kinase that can be activated by caspase-3-dependent proteolytic cleavage to induce dopaminergic neuronal cell death. We now report a novel association between α-synuclein (αsyn), a protein associated with the pathogenesis of Parkinson's disease, and PKCδ, in which αsyn negatively modulates the p300- and nuclear factor-κB (NFκB)-dependent transactivation to downregulate proapoptotic kinase PKCδ expression and thereby protects against apoptosis in dopaminergic neuronal cells. Stable expression of human wild-type αsyn at physiological levels in dopaminergic neuronal cells resulted in an isoform-dependent transcriptional suppression of PKCδ expression without changes in the stability of mRNA and protein or DNA methylation. The reduction in PKCδ transcription was mediated, in part, through the suppression of constitutive NFκB activity targeted at two proximal PKCδ promoter κB sites. This occurred independently of NFκB/IκBα (inhibitor of κBα) nuclear translocation but was associated with decreased NFκB-p65 acetylation. Also, αsyn reduced p300 levels and its HAT (histone acetyltransferase) activity, thereby contributing to diminished PKCδ transactivation. Importantly, reduced PKCδ and p300 expression also were observed within nigral dopaminergic neurons in αsyn-transgenic mice. These findings expand the role of αsyn in neuroprotection by modulating the expression of the key proapoptotic kinase PKCδ in dopaminergic neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective effect of alpha-synuclein knockdown on methamphetamine-induced neurotoxicity in dopaminergic neurons

The over-expression of α-synuclein is a major factor in the death of dopaminergic neurons in a methamphetamine-induced model of Parkinson's disease. In the present study, α-synuclein knockdown rats were created by injecting α-synuclein-shRNA lentivirus stereotaxically into the right striatum of experimental rats. At 2 weeks post-injection, the rats were injected intraperitoneally with methamphe...

متن کامل

Pathological histone acetylation in Parkinson’s disease: Neuroprotection and inhibition of microglial activation through SIRT 2 inhibition

Parkinson's disease (PD) is associated with degeneration of nigrostriatal neurons due to intracytoplasmic inclusions composed predominantly of a synaptic protein called α-synuclein. Accumulations of α-synuclein are thought to 'mask' acetylation sites on histone proteins, inhibiting the action of histone acetyltransferase (HAT) enzymes in their equilibrium with histone deacetylases (HDACs), thus...

متن کامل

Drosophila Histone Deacetylase 6 Protects Dopaminergic Neurons against α-Synuclein Toxicity by Promoting Inclusion Formation

Parkinson's disease (PD) is associated with progressive degeneration of dopaminergic (DA) neurons. We report for the first time that the Drosophila histone deacetylase 6 (dHDAC6) plays a critical role in the protection of DA neurons and the formation of alpha-synuclein inclusions by using a Drosophila PD model constructed by ectopic expression of human alpha-synuclein. Depletion of dHDAC6 signi...

متن کامل

Multitasking C2H2 zinc fingers link Zac DNA binding to coordinated regulation of p300-histone acetyltransferase activity.

Zac is a C(2)H(2) zinc finger protein that regulates apoptosis and cell cycle arrest through DNA binding and transactivation. The coactivator proteins p300/CBP enhance transactivation through their histone acetyltransferase (HAT) activity by modulating chromatin structure. Here, we show that p300 increases Zac transactivation in a strictly HAT-dependent manner. Whereas the classic recruitment m...

متن کامل

Direct binding and functional coupling of α-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis.

Mutations in α-synuclein, a protein highly enriched in presynaptic terminals, have been implicated in the expression of familial forms of Parkinson's disease (PD) whereas native α-synuclein is a major component of intraneuronal inclusion bodies characteristic of PD and other neurodegenerative disorders. Although overexpression of human α-synuclein induces dopaminergic nerve terminal degeneratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 6  شماره 

صفحات  -

تاریخ انتشار 2011