Ultracontractive bounds on Hamilton–Jacobi solutions

نویسنده

  • Ivan Gentil
چکیده

Following the equivalence between logarithmic Sobolev inequality, hypercontractivity of the heat semigroup showed by Gross and hypercontractivity of Hamilton–Jacobi equations, we prove, like the Varopoulos theorem, the equivalence between Euclidean-type Sobolev inequality and an ultracontractive control of the Hamilton–Jacobi equations. We obtain also ultracontractive estimations under general Sobolev inequality which imply in the particular case of a probability measure, transportation inequalities.  2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison Principle for Equations of the Hamilton-jacobi Type in Set-membership Filtering

This paper gives comparison principles for first-order PDEs of the Hamilton-JacobiBellman type that arise in the problem of filtering under unknown disturbances with set-membership bounds on the uncertainty. The exact solutions of this problem, given in set-theoretic terms as “information sets,” are expressed as level sets to the solutions of some specific types of the HJB equation. But these s...

متن کامل

Regularization by Noise for Stochastic Hamilton-jacobi Equations

We study regularizing effects of nonlinear stochastic perturbations for fully nonlinear PDE. More precisely, path-by-path L bounds for the second derivative of solutions to such PDE are shown. These bounds are expressed as solutions to reflected SDE and are shown to be optimal.

متن کامل

Hölder estimates in space - time for viscosity solutions of Hamilton - Jacobi equations ∗

It is well-known that solutions to the basic problem in the calculus of variations may fail to be Lipschitz continuous when the Lagrangian depends on t. Similarly, for viscosity solutions to time-dependent Hamilton-Jacobi equations one cannot expect Lipschitz bounds to hold uniformly with respect to the regularity of coefficients. This phenomenon raises the question whether such solutions satis...

متن کامل

Error Bounds for Monotone Approximation Schemes for Hamilton-Jacobi-Bellman Equations

We obtain error bounds for monotone approximation schemes of Hamilton-Jacobi-Bellman equations. These bounds improve previous results of Krylov and the authors. The key step in the proof of these new estimates is the introduction of a switching system which allows the construction of approximate, (almost) smooth supersolutions for the Hamilton-Jacobi-Bellman equation.

متن کامل

A Transformation Method for Solving the Hamilton{--}jacobi{--}bellman Equation for a Constrained Dynamic Stochastic Optimal Allocation Problem

We propose and analyse a method based on the Riccati transformation for solving the evolutionary Hamilton–Jacobi–Bellman equation arising from the dynamic stochastic optimal allocation problem. We show how the fully nonlinear Hamilton–Jacobi– Bellman equation can be transformed into a quasilinear parabolic equation whose diffusion function is obtained as the value function of a certain parametr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002