Universal Triple Massey Products on Elliptic Curves and Hecke’s Indefinite Theta Series

نویسنده

  • V. PASOL
چکیده

Generalizing [10] we express universal triple Massey products between line bundles on elliptic curves in terms of Hecke’s indefinite theta series. We show that all Hecke’s indefinite theta series arise in this way. 2000 Math. Subj. Class. Primary 14H52; Secondary 55S30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 1 A ug 2 00 4 UNIVERSAL TRIPLE MASSEY PRODUCTS ON ELLIPTIC CURVES AND HECKE ’ S INDEFINITE THETA SERIES

Generalizing [11] we express universal triple Massey products between line bundles on elliptic curves in terms of Hecke's indefinite theta series. We show that all Hecke's indefinite theta series arise in this way.

متن کامل

New Look at Hecke’s Indefinite Theta Series

where Q is an indefinite quadratic form on Z, f(m,n) is a doubly periodic function on Z such that the sums of f(m,n)q over all vertical and all horizontal lines in Z vanish. Some of these series appeared as coefficients in univalued triple Massey products on elliptic curves computed via homological mirror symmetry in [3]. In particular, in this context the condition of vanishing of sums over ve...

متن کامل

A New Look at Hecke’s Indefinite Theta Series

where Q is an indefinite quadratic form on Z, f(m,n) is a doubly periodic function on Z such that the sums of f(m,n)q over all vertical and all horizontal lines in Z vanish. Some of these series appeared as coefficients in univalued triple Massey products on elliptic curves computed via homological mirror symmetry in [3]. In particular, in this context the condition of vanishing of sums over ve...

متن کامل

Indefinite Theta Series of Signature (1, 1) from the Point of View of Homological Mirror Symmetry

We apply the homological mirror symmetry for elliptic curves to the study of indefinite theta series. We prove that every such series corresponding to a quadratic form of signature (1,1) can be expressed in terms of theta series associated with split quadratic forms and the usual theta series. We also show that indefinite theta series corresponding to univalued Massey products between line bund...

متن کامل

Massey and Fukaya Products on Elliptic Curves

This note is a continuation of [6]. Its goal is to show that some higher Massey products on elliptic curve can be computed as higher compositions in Fukaya category of the dual symplectic torus in accordance with the homological mirror conjecture of M. Kontsevich [4]. Namely, we consider triple Massey products of very simple type which are uniquely defined, compute them in terms of theta-functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005