Activity-dependent bidirectional modification of inhibitory synaptic transmission in rat subthalamic neurons.
نویسندگان
چکیده
Rebound burst activity can be generated in neurons in the subthalamic nucleus (STN) by strong GABAergic inhibitory inputs from the globus pallidus externa (GPe) that is reciprocally connected with the STN. It has been proposed that the rebound burst activity in STN neurons is a key event for generating synchronized rhythmic burst activity in the GPe-STN loop, which may be relevant to the resting tremor in Parkinson's disease. Here we report that rebound burst firing of STN neurons induces long-lasting bidirectional modifications of GABAergic synaptic transmission in STN neurons themselves. Using the gramicidin perforated-patch clamp technique in the brain slice preparation, we recorded IPSPs from STN neurons during electrical stimulation of the internal capsule. Rebound spikes triggered by hyperpolarizing current pulses were used to induce modification of inhibitory synaptic transmission. We found that long-lasting potentiation of IPSPs could be induced in the neurons exhibiting three or more rebound spikes that had interspike intervals shorter than half of those during base spontaneous activity, whereas long-lasting depression or no change of IPSP amplitude was likely to be observed in neurons that had no rebound burst or two rebound spikes within a burst. The potentiation or depression of IPSPs was associated with a negative or positive shift of reversal potential of IPSPs (E(IPSP)). The modifications of IPSPs were dependent on activation of postsynaptic voltage-gated calcium channels. This study is the first demonstration that activity-dependent bidirectional modifications of inhibitory synaptic transmission are attributable to bidirectional shifts of E(IPSP).
منابع مشابه
The comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats
The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...
متن کاملThe comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats
The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملActivity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways
Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 28 شماره
صفحات -
تاریخ انتشار 2006