Three-dimensional splay fault geometry and implications for tsunami generation.

نویسندگان

  • G F Moore
  • N L Bangs
  • A Taira
  • S Kuramoto
  • E Pangborn
  • H J Tobin
چکیده

Megasplay faults, very long thrust faults that rise from the subduction plate boundary megathrust and intersect the sea floor at the landward edge of the accretionary prism, are thought to play a role in tsunami genesis. We imaged a megasplay thrust system along the Nankai Trough in three dimensions, which allowed us to map the splay fault geometry and its lateral continuity. The megasplay is continuous from the main plate interface fault upwards to the sea floor, where it cuts older thrust slices of the frontal accretionary prism. The thrust geometry and evidence of large-scale slumping of surficial sediments show that the fault is active and that the activity has evolved toward the landward direction with time, contrary to the usual seaward progression of accretionary thrusts. The megasplay fault has progressively steepened, substantially increasing the potential for vertical uplift of the sea floor with slip. We conclude that slip on the megasplay fault most likely contributed to generating devastating historic tsunamis, such as the 1944 moment magnitude 8.1 Tonankai event, and it is this geometry that makes this margin and others like it particularly prone to tsunami genesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Dimensional Numerical Simulation of Tsunami Generation and Propagation Due to Makran Subduction and run-up on Chabahar Bay and Makran Coasts

Makran subduction located at the northwest of the Indian Ocean nearby the southern coast of Iran and Pakistan. Makran subduction is the source of tsunamis that threaten southern coast of Iran. In this article, generation and propagation of 1945’s tsunami initiated by Makran subduction is simulated. For the three dimensional generation of the wave, advanced algorithm of Okada is adopted. The CFD...

متن کامل

Enhanced GPS inversion technique applied to the 2004 Sumatra earthquake and tsunami

[1] Since the devastating earthquake and tsunami in 2004 offshore Sumatra, many source models have been put forward. Recent studies clearly show that modern GPSprocessing could achieve high resolving power for slip in near real time, which is crucial for determining tsunami initial conditions, provided accurate GPS-processing and inversion. Here, we propose an inversion technique with improved ...

متن کامل

Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge

[1] We expand the theory of critically tapered Coulomb wedge for accretionary prisms by considering stress changes in subduction earthquake cycles. Building on the Coulomb plasticity of the classical theory, we assume an elastic–perfectly Coulomb plastic rheology and derive exact stress solutions for stable and critical wedges. The new theory postulates that the actively deforming, most seaward...

متن کامل

Splay Faults in the Makran Subduction Zone and Changes of their Transferred Coulomb Stress

The Makran subduction zone in northeast and the Sumatra subduction zone (Sunda) in the west have been known as tsunamigenic zones of the Indian Ocean. The 990 km long Makran subduction zone is located offshore of Iran, Pakistan and Oman. Similar to many subduction zones all over the world, the Makran accretionary prism is associated with an imbricate of thrust faults across the zone, which may ...

متن کامل

Short Note Quantifying Natural Fault Geometry: Statistics of Splay Fault Angles

We propose a new approach to quantifying fault system geometry, using an objective fit of the fault geometry to a test function, specifically here a fault branch. Fitting a Y-shaped object using a cost function to dextral faults in California, we find a number of significant results arising from use of a a systematic, objective, quantitative approach. (1) The largest angle of the branch structu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 318 5853  شماره 

صفحات  -

تاریخ انتشار 2007