A Highly Redundant Gene Network Controls Assembly of the Outer Spore Wall in S. cerevisiae

نویسندگان

  • Coney Pei-Chen Lin
  • Carey Kim
  • Steven O. Smith
  • Aaron M. Neiman
چکیده

The spore wall of Saccharomyces cerevisiae is a multilaminar extracellular structure that is formed de novo in the course of sporulation. The outer layers of the spore wall provide spores with resistance to a wide variety of environmental stresses. The major components of the outer spore wall are the polysaccharide chitosan and a polymer formed from the di-amino acid dityrosine. Though the synthesis and export pathways for dityrosine have been described, genes directly involved in dityrosine polymerization and incorporation into the spore wall have not been identified. A synthetic gene array approach to identify new genes involved in outer spore wall synthesis revealed an interconnected network influencing dityrosine assembly. This network is highly redundant both for genes of different activities that compensate for the loss of each other and for related genes of overlapping activity. Several of the genes in this network have paralogs in the yeast genome and deletion of entire paralog sets is sufficient to severely reduce dityrosine fluorescence. Solid-state NMR analysis of partially purified outer spore walls identifies a novel component in spore walls from wild type that is absent in some of the paralog set mutants. Localization of gene products identified in the screen reveals an unexpected role for lipid droplets in outer spore wall formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GAS2 and GAS4, a pair of developmentally regulated genes required for spore wall assembly in Saccharomyces cerevisiae.

The GAS multigene family of Saccharomyces cerevisiae is composed of five paralogs (GAS1 to GAS5). GAS1 is the only one of these genes that has been characterized to date. It encodes a glycosylphosphatidylinositol-anchored protein functioning as a beta(1,3)-glucan elongase and required for proper cell wall assembly during vegetative growth. In this study, we characterize the roles of the GAS2 an...

متن کامل

Distinct steps in yeast spore morphogenesis require distinct SMK1 MAP kinase thresholds.

The SMK1 mitogen-activated protein kinase is required for spore morphogenesis in Saccharomyces cerevisiae. In contrast to the multiple aberrant spore wall assembly patterns seen even within a single smk1 null ascus, different smk1 missense mutants block in a coordinated fashion at intermediate stages. One smk1 mutant forms asci in which the four spores are surrounded only by prospore wall-like ...

متن کامل

The Smk1p MAP kinase negatively regulates Gsc2p, a 1,3-beta-glucan synthase, during spore wall morphogenesis in Saccharomyces cerevisiae.

Spore formation in Saccharomyces cerevisiae involves the sequential deposition of multiple spore wall layers between the prospore membranes that surround each meiotic product. The Smk1p mitogen-activated protein (MAP) kinase plays a critical role in spore formation, but the proteins that interact with Smk1p to regulate spore morphogenesis have not been described. Using mass spectrometry, we ide...

متن کامل

Roles of septins in prospore membrane morphogenesis and spore wall assembly in Saccharomyces cerevisiae

The highly conserved family of septin proteins has important functions in cytokinesis in mitotically proliferating cells. A different form of cytokinesis occurs during gametogenesis in Saccharomyces cerevisiae, in which four haploid meiotic products become encased by prospore membrane (PSMs) and specialized, stress-resistant spore walls. Septins are known to localize in a series of structures n...

متن کامل

Ady3p links spindle pole body function to spore wall synthesis in Saccharomyces cerevisiae.

Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013