The carbonylation and covalent dimerization of human superoxide dismutase 1 caused by its bicarbonate-dependent peroxidase activity is inhibited by the radical scavenger tempol.
نویسندگان
چکیده
Tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) reduces tissue injury in animal models of various diseases via mechanisms that are not completely understood. Recently, we reported that high doses of tempol moderately increased survival in a rat model of ALS (amyotrophic lateral sclerosis) while decreasing the levels of oxidized hSOD1 (human Cu,Zn-superoxide dismutase) in spinal cord tissues. To better understand such a protective effect in vivo, we studied the effects of tempol on hSOD1 oxidation in vitro. The chosen oxidizing system was the bicarbonate-dependent peroxidase activity of hSOD1 that consumes H2O2 to produce carbonate radical, which oxidizes the enzyme. Most of the experiments were performed with 30 μM hSOD1, 25 mM bicarbonate, 1 mM H2O2, 0.1 mM DTPA (diethylenetriaminepenta-acetic acid) and 50 mM phosphate buffer at a final pH of 7.4. The results showed that tempol (5-75 μM) does not inhibit hSOD1 turnover, but decreases its resulting oxidation to carbonylated and covalently dimerized forms. Tempol acted by scavenging the carbonate radical produced and by recombining with hSOD1-derived radicals. As a result, tempol was consumed nearly stoichiometrically with hSOD1 monomers. MS analyses of turned-over hSOD1 and of a related peptide oxidized by the carbonate radical indicated the formation of a relatively unstable adduct between tempol and hSOD1-Trp32•. Tempol consumption by the bicarbonate-dependent peroxidase activity of hSOD1 may be one of the reasons why high doses of tempol were required to afford protection in an ALS rat model. Overall, the results of the present study confirm that tempol can protect against protein oxidation and the ensuing consequences.
منابع مشابه
Bicarbonate enhances alpha-synuclein oligomerization and nitration: intermediacy of carbonate radical anion and nitrogen dioxide radical.
alpha-Synuclein, a neuronal presynaptic protein, has been reported to undergo oligomerization to form toxic Lewy bodies in neurodegenerative disorders. One of the proposed mechanisms for aggregation of alpha-synuclein involves oxidative and nitrative modifications. In the present study, we show that addition of 3-morpholino-sydnonimine chloride (SIN-1) or slow infusion of pre-formed peroxynitri...
متن کاملبهینهسازی تولید پینه و تأثیر تنش اسمزی بر پینه های گل قرنفل (Dianthus barbatus L.) در محیط درون شیشهای
Dianthus barbatus is an important ornamental bedding plant in temperate regions with traditional medicinal applications. Water shortage and drought stress are major limitations for landscape development and plant medicine production. Callogenesis is the key step for modern plant breeding techniques and in vitro drought stress study defines the mechanisms of plant response to stress. Therefore t...
متن کاملProtective Effect of Captopril against Doxorubicin-Induced Oxidative Stress in Isolated Rat Liver Mitochondria
Doxorubicin (DOX) is an anthracycline antibiotic that has been used for a long time in therapy of an array of human malignancies either alone or in combination with other cytotoxic agents. The dose-dependent cardiotoxicity of DOX significantly limits its anticancer efficacies. Oxidative stress caused by enhanced production of reactive oxygen species is an important contributor to DOX mito...
متن کاملHydroxylation of phenol to hydroquinone catalyzed by a human myeloperoxidase-superoxide complex: possible implications in benzene-induced myelotoxicity.
Benzene, a known human myelotoxin and leukemogen is metabolized by liver cytochrome P-450 monooxygenase to phenol. Further hydroxylation of phenol by cytochrome P-450 monooxygenase results in the formation of mainly hydroquinone, which accumulates in the bone marrow. Bone marrow contains high levels of myeloperoxidase. Here we report that phenol hydroxylation to hydroquinone is also catalyzed b...
متن کاملHuman Erythrocyte Superoxide Dismutase Encapsulated in Positively Charged Liposomes
Superoxide dismutase (SOD) is an important antioxidant that protects many types of cells from the free radical damage. One of the possible ways for the use of SOD is its incorporation in liposomes. The aim of this study was to investigate the effect of cationic phospholipids on the entrapment of human erythrocyte superoxide dismutase (Cu/Zn SOD) in liposomes. Also, in the present study, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 455 1 شماره
صفحات -
تاریخ انتشار 2013