Radiosensitization of Cancer Stem Cells: Targeting Tgfβ, Notch or Telomerase to Improve Tumor Response O Radiotherapy
نویسنده
چکیده
Radiation resistant cancer stem cells are the main reason for treatment failure and tumor recurrence after cancer radiotherapy. Increasing biological evidences demonstrate that these cells possess the capacity to repair radiation induced DNA damage, protect themselves from radiation derived reactive oxygen species, survive and proliferate after several fractions of radiotherapy and finally, repopulate the heterogeneity of the tumor. Thus, targeting and eliminating these cells should be necessary to achieve cancer cure in radiotherapy. Three major approaches that specifically target radioresistant cancer stem cells have been recently investigated. First, inhibition of TGFβ, a major mediator of the tissue response to radiation, has been shown to induce radiosensitization of cancer stem cells by targeting the DNA damage response mechanism. Second, by preventing Notch activation during fractionated radiotherapy, cancer stem cells were depleted from their ability to repopulate the tumor after radiation. Finally, telomerase activity inhibitors have shown to specifically decrease the cancer stem cell population after radiotherapy. In the present review, we evaluate these radiosentitizing approaches and their possible effects when combined with fractionated radiotherapy as they promise to be a powerful tool in the battle against this cancer.
منابع مشابه
Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles
Introduction: A main choice for cancer treatment is radiotherapy. But, the radiotherapy disadvantage is damages caused by radiation given to normal tissues/organs surrounding cancer. One way to avoid this is via increasing radiosensitization of cancer cells. Gold nanoparticles (GNPs) have shown sensitizing effect on cancer cells by enhancing their absorbed dose. Unlike earlier ...
متن کاملRadiation-induced upregulation of telomerase activity escapes PI3-kinase inhibition in two malignant glioma cell lines
Tumor relapse after radiotherapy is a great concern in the treatment of high-grade gliomas. Inhibition of the PI3-kinase/AKT pathway is known to radiosensitize cancer cells and to delay their DNA repair after irradiation. In this study, we show that the radiosensitization of CB193 and T98G, two high-grade glioma cell lines, by the PI3K inhibitor LY294002, correlates with the induction of G1 and...
متن کاملThe Effect of Plant-derived Compounds in Targeting Cancer Stem Cells
Background Cancer stem cells (CSCs) are a small subpopulation of cancer cells with self-renewal and differentiation ability. Furthermore, CSCs are resistant to chemoradiotherapy due to their high level of detoxifying enzymes, strong DNA repair abilities, and high drug efflux capacity. Objective Therefore, CSCs are supposed to account for cancer initiation, progression, metastasis, recurrence, ...
متن کاملProstate cancer: radioresistance molecular target-related markers and foreseeable modalities of radiosensitization.
OBJECTIVES Though the external beam radiation therapy is a standard treatment option for both organ-confined and regionally advanced prostate cancer, unluckily, despite more and more effective advances in radiation delivery procedures, the prostate cancer radioresistance still occurs in a significant amount of patients undergone radiotherapy. This review aims to highlight the molecular aberrati...
متن کاملTargeting Notch to overcome radiation resistance
Radiotherapy represents an important therapeutic strategy in the treatment of cancer cells. However, it often fails to eliminate all tumor cells because of the intrinsic or acquired treatment resistance, which is the most common cause of tumor recurrence. Emerging evidences suggest that the Notch signaling pathway is an important pathway mediating radiation resistance in tumor cells. Successful...
متن کامل