Lesions of the Intergeniculate Leaflet Lead to a Reorganization in Circadian Regulation and a Reversal in Masking Responses to Photic Stimuli in the Nile Grass Rat
نویسندگان
چکیده
Light influences the daily patterning of behavior by entraining circadian rhythms and through its acute effects on activity levels (masking). Mechanisms of entrainment are quite similar across species, but masking can be very different. Specifically, in diurnal species, light generally increases locomotor activity (positive masking), and in nocturnal ones, it generally suppresses it (negative masking). The intergeniculate leaflet (IGL), a subdivision of the lateral geniculate complex, receives direct retinal input and is reciprocally connected with the primary circadian clock, the suprachiasmatic nucleus (SCN). Here, we evaluated the influence of the IGL on masking and the circadian system in a diurnal rodent, the Nile grass rat (Arvicanthis niloticus), by determining the effects of bilateral IGL lesions on general activity under different lighting conditions. To examine masking responses, light or dark pulses were delivered in the dark or light phase, respectively. Light pulses at Zeitgeber time (ZT) 14 increased activity in control animals but decreased it in animals with IGL lesions. Dark pulses had no effect on controls, but significantly increased activity in lesioned animals at ZT0. Lesions also significantly increased activity, primarily during the dark phase of a 12:12 light/dark cycle, and during the subjective night when animals were kept in constant conditions. Taken together, our results suggest that the IGL plays a vital role in the maintenance of both the species-typical masking responses to light, and the circadian contribution to diurnality in grass rats.
منابع مشابه
Non-photic manipulations induce expression of Fos protein in the suprachiasmatic nucleus and intergeniculate leaflet in the rat.
Expression of Fos protein in the suprachiasmatic nucleus (SCN) and intergeniculate leaflet (IGL) is considered a cellular correlate of light-induced phase-shift of circadian rhythms in rodents. Non-photic stimuli also induce phase shifts, but their effects on Fos expression have not been established. We examined induction of Fos protein in SCN and IGL regions, in response to cage change, intrap...
متن کاملJuxtacellular recording/labeling analysis of physiological and anatomical characteristics of rat intergeniculate leaflet neurons.
The thalamic intergeniculate leaflet (IGL) is involved in mediating effects of both photic and nonphotic stimuli on mammalian circadian rhythms. IGL neurons containing neuropeptide Y (NPY) have been implicated in mediating nonphotic effects, but little is known about those involved in photic entrainment. We used juxtacellular recording/labeling in rats to characterize both photic responses and ...
متن کاملPii: S0306-4522(97)00575-7
-Components of the circadian system, the suprachiasmatic nucleus and the intergeniculate leaflet receive serotonin input from the raphe nuclei. Manipulations of serotonin neurotransmission disrupt cellular, electrophysiological, and behavioural responses of the circadian system to light, suggesting that serotonin plays a modulatory role in photic regulation of circadian rhythms. To study the re...
متن کاملThe role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod.
Mammalian circadian rhythms are synchronized to environmental light/dark (LD) cycles via daily phase resetting of the circadian clock in the suprachiasmatic nucleus (SCN). Photic information is transmitted to the SCN directly from the retina via the retinohypothalamic tract (RHT) and indirectly from the retinorecipient intergeniculate leaflet (IGL) via the geniculohypothalamic tract (GHT). The ...
متن کاملAbsence of normal photic integration in the circadian visual system: response to millisecond light flashes.
Light is the most prominent synchronizing stimulus for circadian rhythms. The circadian visual system responds in accordance with the energy content of photic stimuli longer than a few seconds. Here, as few as three flashes (2 ms each delivered to hamsters over 5 or 60 min at circadian time 19) elicited large phase advances. Ten or more flashes were required to induce FOS protein in the suprach...
متن کامل