Generalized associahedra via brick polytopes
نویسندگان
چکیده
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspectives on these constructions. This new approach yields in particular the vertex description and a relevant Minkowski sum decomposition of generalized associahedra. Résumé. Nous généralisons le polytope des briques de V. Pilaud et F. Santos aux complexes de sous-mots sphériques pour des groupes de Coxeter finis. Cette construction fournit des réalisations polytopales pour une certaine classe de complexes de sous-mots qui contient tous les complexes d’amas de type fini. Pour ces derniers, les polytopes des briques s’avèrent coı̈ncider avec les réalisations connues des associaèdres généralisés, ouvrant ainsi de nouvelles perspectives sur ces constructions. Cette nouvelle approche fournit en particulier la description des sommets et une décomposition pertinente en somme de Minkowski des associaèdres généralisés.
منابع مشابه
Brick Polytopes of Spherical Subword Complexes: a New Approach to Generalized Associahedra
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کاملBrick Polytopes of Spherical Subword Complexes and Generalized Associahedra
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کاملar X iv : m at h / 06 09 18 4 v 1 [ m at h . C O ] 6 S ep 2 00 6 FACES OF GENERALIZED PERMUTOHEDRA
The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γ-vectors. These polytopes include permutohedra, associahedra, graph-associahedra, graphical zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas involving descent statistics, calculate generating functions and discuss their relationship with Simon...
متن کاملar X iv : m at h / 06 09 18 4 v 2 [ m at h . C O ] 1 8 M ay 2 00 7 FACES OF GENERALIZED PERMUTOHEDRA
The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γ-vectors. These polytopes include permutohedra, associahedra, graph-associahedra, simple graphic zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas for h-vectors and γ-vectors involving descent statistics. This includes a combinatorial interpret...
متن کاملFaces of Generalized Permutohedra
The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γvectors. These polytopes include permutohedra, associahedra, graphassociahedra, simple graphic zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas for h-vectors and γ-vectors involving descent statistics. This includes a combinatorial interpretat...
متن کامل