Generalized associahedra via brick polytopes

نویسندگان

  • Vincent Pilaud
  • Christian Stump
چکیده

We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspectives on these constructions. This new approach yields in particular the vertex description and a relevant Minkowski sum decomposition of generalized associahedra. Résumé. Nous généralisons le polytope des briques de V. Pilaud et F. Santos aux complexes de sous-mots sphériques pour des groupes de Coxeter finis. Cette construction fournit des réalisations polytopales pour une certaine classe de complexes de sous-mots qui contient tous les complexes d’amas de type fini. Pour ces derniers, les polytopes des briques s’avèrent coı̈ncider avec les réalisations connues des associaèdres généralisés, ouvrant ainsi de nouvelles perspectives sur ces constructions. Cette nouvelle approche fournit en particulier la description des sommets et une décomposition pertinente en somme de Minkowski des associaèdres généralisés.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brick Polytopes of Spherical Subword Complexes: a New Approach to Generalized Associahedra

We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...

متن کامل

Brick Polytopes of Spherical Subword Complexes and Generalized Associahedra

We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...

متن کامل

ar X iv : m at h / 06 09 18 4 v 1 [ m at h . C O ] 6 S ep 2 00 6 FACES OF GENERALIZED PERMUTOHEDRA

The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γ-vectors. These polytopes include permutohedra, associahedra, graph-associahedra, graphical zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas involving descent statistics, calculate generating functions and discuss their relationship with Simon...

متن کامل

ar X iv : m at h / 06 09 18 4 v 2 [ m at h . C O ] 1 8 M ay 2 00 7 FACES OF GENERALIZED PERMUTOHEDRA

The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γ-vectors. These polytopes include permutohedra, associahedra, graph-associahedra, simple graphic zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas for h-vectors and γ-vectors involving descent statistics. This includes a combinatorial interpret...

متن کامل

Faces of Generalized Permutohedra

The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γvectors. These polytopes include permutohedra, associahedra, graphassociahedra, simple graphic zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas for h-vectors and γ-vectors involving descent statistics. This includes a combinatorial interpretat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012