Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase

نویسندگان

  • Yousuke FURUTA
  • Takashi KOMENO
  • Takaaki NAKAMURA
چکیده

Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) is an anti-viral agent that selectively and potently inhibits the RNA-dependent RNA polymerase (RdRp) of RNA viruses. Favipiravir was discovered through screening chemical library for anti-viral activity against the influenza virus by Toyama Chemical Co., Ltd. Favipiravir undergoes an intracellular phosphoribosylation to be an active form, favipiravir-RTP (favipiravir ribofuranosyl-5'-triphosphate), which is recognized as a substrate by RdRp, and inhibits the RNA polymerase activity. Since the catalytic domain of RdRp is conserved among various types of RNA viruses, this mechanism of action underpins a broader spectrum of anti-viral activities of favipiravir. Favipiravir is effective against a wide range of types and subtypes of influenza viruses, including strains resistant to existing anti-influenza drugs. Of note is that favipiravir shows anti-viral activities against other RNA viruses such as arenaviruses, bunyaviruses and filoviruses, all of which are known to cause fatal hemorrhagic fever. These unique anti-viral profiles will make favipiravir a potentially promising drug for specifically untreatable RNA viral infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T-705 (favipiravir) inhibition of arenavirus replication in cell culture.

A number of New World arenaviruses (Junín [JUNV], Machupo [MACV], and Guanarito [GTOV] viruses) can cause human disease ranging from mild febrile illness to a severe and often fatal hemorrhagic fever syndrome. These highly pathogenic viruses and the Old World Lassa fever virus pose a significant threat to public health and national security. The only licensed antiviral agent with activity again...

متن کامل

T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro.

Several novel anti-influenza compounds are in various phases of clinical development. One of these, T-705 (favipiravir), has a mechanism of action that is not fully understood but is suggested to target influenza virus RNA-dependent RNA polymerase. We investigated the mechanism of T-705 activity against influenza A (H1N1) viruses by applying selective drug pressure over multiple sequential pass...

متن کامل

The Ambiguous Base-Pairing and High Substrate Efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-Triphosphate towards Influenza A Virus Polymerase

T-705 (Favipiravir) is a broad-spectrum antiviral molecule currently in late stage clinical development for the treatment of influenza virus infection. Although it is believed that T-705 potency is mediated by its ribofuranosyl triphosphate (T-705 RTP) metabolite that could be mutagenic, the exact molecular interaction with the polymerase of influenza A virus (IAVpol) has not been elucidated. H...

متن کامل

Effective Oral Favipiravir (T-705) Therapy Initiated after the Onset of Clinical Disease in a Model of Arenavirus Hemorrhagic Fever

BACKGROUND Lassa and Junín viruses are the most prominent members of the Arenaviridae family of viruses that cause viral hemorrhagic fever syndromes Lassa fever and Argentine hemorrhagic fever, respectively. At present, ribavirin is the only antiviral drug indicated for use in treatment of these diseases, but because of its limited efficacy in advanced cases of disease and its toxicity, safer a...

متن کامل

Role of human hypoxanthine guanine phosphoribosyltransferase in activation of the antiviral agent T-705 (favipiravir).

6-Fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) is a novel antiviral compound with broad activity against influenza virus and diverse RNA viruses. Its active metabolite, T-705-ribose-5'-triphosphate (T-705-RTP), is recognized by influenza virus RNA polymerase as a substrate competing with GTP, giving inhibition of viral RNA synthesis and lethal virus mutagenesis. Which enzymes perform the acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2017