Nucleotide Pyrophosphatase/Phosphodiesterase 1 Exerts a Negative Effect on Starch Accumulation and Growth in Rice Seedlings under High Temperature and CO2 Concentration Conditions
نویسندگان
چکیده
Nucleotide pyrophosphatase/phosphodiesterase (NPP) is a widely distributed enzymatic activity occurring in both plants and mammals that catalyzes the hydrolytic breakdown of the pyrophosphate and phosphodiester bonds of a number of nucleotides. Unlike mammalian NPPs, the physiological function of plant NPPs remains largely unknown. Using a complete rice NPP1-encoding cDNA as a probe, in this work we have screened a rice shoot cDNA library and obtained complete cDNAs corresponding to six NPP genes (NPP1-NPP6). As a first step to clarify the role of NPPs, recombinant NPP1, NPP2 and NPP6 were purified from transgenic rice cells constitutively expressing NPP1, NPP2 and NPP6, respectively, and their enzymatic properties were characterized. NPP1 and NPP6 exhibited hydrolytic activities toward ATP, UDP-glucose and the starch precursor molecule, ADP-glucose, whereas NPP2 did not recognize nucleotide sugars as substrates, but hydrolyzed UDP, ADP and adenosine 5'-phosphosulfate. To gain insight into the physiological function of rice NPP1, an npp1 knockout mutant was characterized. The ADP-glucose hydrolytic activities in shoots of npp1 rice seedlings were 8% of those of the wild type (WT), thus indicating that NPP1 is a major determinant of ADP-glucose hydrolytic activity in rice shoots. Importantly, when seedlings were cultured at 160 Pa CO2 under a 28°C/23°C (12 h light/12 h dark) regime, npp1 shoots and roots were larger than those of wild-type (WT) seedlings. Furthermore, the starch content in the npp1 shoots was higher than that of WT shoots. Growth and starch accumulation were also enhanced under an atmospheric CO2 concentration (40 Pa) when plants were cultured under a 33°C/28°C regime. The overall data strongly indicate that NPP1 exerts a negative effect on plant growth and starch accumulation in shoots, especially under high CO2 concentration and high temperature conditions.
منابع مشابه
Up-regulation of photosynthesis and sucrose-P synthase in rice under elevated carbon dioxide and temperature conditions
Basmati rice (Oryza sativa L.) cultivars viz. PRH-10 (pusa rice hybrid-10) and PS-2 (Pusa Sugandh-2) were grown under two different day/night temperatures (31/24°C, 35/28°C) at ambient (370 μmol/mol) and elevated (550 μmol/ mol) carbon dioxide (CO2) concentration, respectively, to characterize how an increase in CO2 and temperature affects rice photosynthesis and carbohydrate metabolism. At ele...
متن کاملEffect of silicon application on wheat seedlings growth under water-deficit stress induced by polyethylene glycol
Silicon is known to ameliorate the deleterious effects of drought on plant growth. We evaluated growth of wheat (Triticum aestivum L. CV. Chamran) under Water-Deficit Stress Induced by Polyethylene Glycol as affected by Si application. In this article, the effects of Si (as potassium silicate) on some parameters related to growth, chlorophyll concentration relative water content (RWC), electrol...
متن کاملEffect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition
Triticum aestivum L. and Zea maize L. are both sensitive to salinity stress which is a major problem faced by farmers today. In the present study, the effect of chitosan, a biologic elicitor under salinity stress was examined on growth parameters and biochemical markers in maize and wheat s...
متن کاملEffect of zinc and boron interaction on growth and mineral composition of lemon seedlings in a calcareous soil
The impact of different concentration of zinc (Zn) and boron (B) on growth and mineral composition of lemon seedlings (Citrus Aurantifolia L.) was studied under greenhouse conditions. We used five concentration levels of B (0, 2.5, 5, 10 and 20 μg g-1 soil) and three of Zn (0, 5 and 10 μg g-1 soil). Fresh and dry plant weights of the control treatment were strongly decreased with B levels highe...
متن کاملRice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-golgi to the chloroplast through the secretory pathway.
A nucleotide pyrophosphatase/phosphodiesterase (NPP) activity that catalyzes the hydrolytic breakdown of ADP-glucose (ADPG) has been shown to occur in the plastidial compartment of both mono- and dicotyledonous plants. To learn more about this enzyme, we purified two NPPs from rice (Oryza sativa) and barley (Hordeum vulgare) seedlings. Both enzymes are glycosylated, since they bind to concanava...
متن کامل