Spectral approximations by the HDG method
نویسندگان
چکیده
We consider the numerical approximation of the spectrum of a secondorder elliptic eigenvalue problem by the hybridizable discontinuous Galerkin (HDG) method. We show for problems with smooth eigenfunctions that the approximate eigenvalues and eigenfunctions converge at the rate 2k + 1 and k + 1, respectively. Here k is the degree of the polynomials used to approximate the solution, its flux, and the numerical traces. Our numerical studies show that a Rayleigh quotient-like formula applied to certain locally postprocessed approximations can yield eigenvalues that converge faster at the rate 2k + 2 for the HDG method as well as for the BrezziDouglas-Marini (BDM) method. We also derive and study a condensed nonlinear eigenproblem for the numerical traces obtained by eliminating all the other variables.
منابع مشابه
Analysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method
The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...
متن کاملA model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations
We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the govern...
متن کاملNonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملeXtended Hybridizable Discontinous Galerkin (X-HDG) for Void Problems
A strategy for the Hybridizable Discontinous Galerkin (HDG) solution of problems with voids, inclusions or free surfaces is proposed. It is based on an eXtended Finite Element philosophy with a level-set description of interfaces. Thus, the computational mesh is not required to fit the interface (i.e. the boundary), simplifying and reducing the cost of mesh generation and, in particular, avoidi...
متن کاملA Time - Spectral Hybridizable Discontinuous Galerkin Method for Periodic Flow Problems
Numerical simulations of time-periodic flows are an essential design tool for a wide range of engineered systems, including jet engines, wind turbines and flapping wings. Conventional solvers for time-periodic flows are limited in accuracy and efficiency by the low-order Finite Volume and time-marching methods they typically employ. These methods introduce significant numerical dissipation in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 84 شماره
صفحات -
تاریخ انتشار 2015