g-Aminobutyric acidA neurotransmission and cerebral ischemia
نویسندگان
چکیده
In this review, we present evidence for the role of g-aminobutyric acid (GABA) neurotransmission in cerebral ischemia-induced neuronal death. While glutamate neurotransmission has received widespread attention in this area of study, relatively few investigators have focused on the ischemia-induced alterations in inhibitory neurotransmission. We present a review of the effects of cerebral ischemia on pre and postsynaptic targets within the GABAergic synapse. Both in vitro and in vivo models of ischemia have been used to measure changes in GABA synthesis, release, reuptake, GABAA receptor expression and activity. Cellular events generated by ischemia that have been shown to alter GABA neurotransmission include changes in the Cl gradient, reduction in ATP, increase in intracellular Ca, generation of reactive oxygen species, and accumulation of arachidonic acid and eicosanoids. Neuroprotective strategies to increase GABA neurotransmission target both sides of the synapse as well, by preventing GABA reuptake and metabolism and increasing GABAA receptor activity with agonists and allosteric modulators. Some of these strategies are quite ef®cacious in animal models of cerebral ischemia, with sedation as the only unwanted side-effect. Based on promising animal data, clinical trials with GABAergic drugs are in progress for speci®c types of stroke. This review attempts to provide an understanding of the mechanisms by which GABA neurotransmission is sensitive to cerebral ischemia. Furthermore, we discuss how dysfunction of GABA neurotransmission may contribute to neuronal death and how neuronal death can be prevented by GABAergic drugs.
منابع مشابه
April 2003 Body
INTRODUCTION Potentiators of inhibitory neurotransmission may provide a neuroprotective effect on cerebral tissue exposed to ischemia, without inducing toxic side effects. Topiramate and vigabatrin enhance the action of gamma-aminobutyric acid (GABA), and each has side effect profiles known to be well tolerated through their clinical use as anticonvulsant medications. We assessed the potential ...
متن کاملResearch Paper: Optimization of Transient Focal Cerebral Ischemia Model by Middle Cerebral Artery Occlusion
Introduction: Cerebral ischemia is one of the most common causes of death in human populations in the industrial communities. The need for animal models is inevitable to study the pathophysiology and treatment of cerebral ischemia in human. The current study aimed at evaluating the strengths and weaknesses of different techniques used to create ischemia in previous studies and optimizing the tr...
متن کاملExcitatory and inhibitory amino acid binding sites in human dentate nucleus.
Autoradiography of excitatory and inhibitory amino acid binding sites in human dentate nuclei indicated virtually no binding to N-methyl-D-aspartate (NMDA) or gamma-aminobutyric acidB (GABAB) binding sites, and a low density of kainate binding sites. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid, metabotropic-quisqualate, benzodiazepine, and gamma-aminobutyric acidA (GABAA) binding s...
متن کاملFunctionalized fullerene materials (fullerol nanoparticles) reduce brain injuries during cerebral ischemia-reperfusion in rat
Aim: Oxidative stress plays a crucial role in the pathophysiology of ischemic stroke. Since water-solublefullerene derivatives act as the potent scavenger of oxygen free radicals in biological systems, we aimedto investigate the possible protective effects of fullerol nanoparticles on brain infarction and edema intransient model of focal cerebral ischemia in rat.Materials & Methods: Experiment ...
متن کاملCarthamus tinctorius L. ameliorates brain injury followed by cerebral ischemia-reperfusion in rats by antioxidative and anti-inflammatory mechanisms
Objective(s): Carthamus tinctorius L. (CT) or saffloweris widely used in traditional Chinese medicine. This study investigated the effects of CT extract (CTE) on ischemia–reperfusion (I/R) brain injury and elucidated the underlying mechanism. Materials and Methods: The I/R model was conducted by occlusion of both common carotid arteries and right middle cerebral artery for 90 min followed by 24...
متن کامل