Design and Analysis of Triple Notched Band Uwb Band Pass Filter Using Defected Microstrip Structure (Dms)

نویسندگان

  • Satish Chand Gupta
  • Mithilesh Kumar
  • Ram Swaroop Meena
چکیده

This paper presents design, simulation, fabrication and electrical analysis of a triple notched band UWB band pass filter. Short circuit stubs and microstrip line defected structures are used to design a triple notched band UWB filter. The proposed UWB BPF consists of five short circuited stubs of quarter wavelength attached to the feed line. The notched bands are created by introducing three U-shaped defected microstrip structures in the feed line. The proposed structure of the filter is designed, simulated on CST MSW and fabricated using conventional photolithography process. This band pass filter is designed to pass the UWB signals between 3.1 GHz to 10.6 GHz and to eliminate INSAT signal (4.6 GHz), WLAN signal (5.6 GHz) and satellite communication signal (8.0 GHz). The experimental results of this fabricated filter are compared with the simulated results and they are found to be in close agreement to each other. The Electrical equivalent circuit of this triple notched band filter is also presented in this paper and verified mathematically. This filter is compact in size and better in performance. It can be incorporated in UWB communication system to efficiently increase the interference protection from undesired signals. The physical dimension of this filter is about 30x10.5 mm 2 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Size UWB Monopole Antenna with Triple Band-Notches

This paper presents triple band notched ultra wide band (UWB) monopole antenna with overall size of 36 × 32 mm fed by microstrip transmission line. In order to achieve a good impedance matching from 2.7 GHz to 13.4 GHz, a tapered transition between the rectangular patch and the feeding line is utilized. The three notched frequency bands are accomplished by a defected microstrip structure (DMS) ...

متن کامل

Design and Analysis of Ultra-wide Band Bandpass Filter Using Spiral Stub-Loaded Triple-Mode Resonator with a Notched Band

An ultra-wide band band-pass filter using novel spiral stub-loaded triple-mode resonator (SSLTMR) is presented. New spiral stub loaded resonator is analyzed with odd and even modes analysis for this class of BPF, achieving higher band wide and size reduction. In order to have a good response characterized, two (SSL-TMRs) and two quarter wavelength digital coupled lines are used. This new design...

متن کامل

Design of Compact Multi-Channel Diplexer Using Defected Microstrip Structure

In this paper, two compact quad-channel and six-channel diplexer are designed and fabricated using defected microstrip structure (DMS). This structure is designed for the desired frequency based on the literature reviews. The proposed configuration is composed of a conventional T-junction divider with two pairs of open bended stubs and dual/tri-band filters. In designing dual band filters, a lo...

متن کامل

Design of a Two Octave Gysel Power-Divider Using DGS and DMS

This paper proposes a two way L and S band Gysel power divider/combiner that uses line to ground resistors. Step by step methods to obtain a wide isolation and transmission bandwidth are presented. A design that uses five resistors is selected and optimized based on Quasi Newton method. Then the Defected Microstrip Structure (DMS) and Defected Ground Structure (DGS) is used to obtain better tra...

متن کامل

A Compact UWB Bandpass Filter with High Selectivity and Dual Notched-Band

A novel compact-sized ultra-wideband (UWB) bandpass filter (BPF) is proposed in this paper. The proposed BPF is highly selective and is able to eliminate WLAN signals from 5.15-5.35 GHz, and downlink of X-band satellite communication signals from 7.25-7.75 GHz. Generally, a multiple-mode resonator (MMR), comprised of a U-shaped line, with two high impedance stubs connected to it, and one steppe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018