Molten-globule structure and membrane binding of the N-terminal protease-resistant domain (63-193) of the steroidogenic acute regulatory protein (StAR).

نویسندگان

  • M Song
  • H Shao
  • A Mujeeb
  • T L James
  • W L Miller
چکیده

The first step in steroidogenesis is the movement of cholesterol from the outer to inner mitochondrial membrane; this movement is facilitated by the steroidogenic acute regulatory protein (StAR). StAR has molten-globule properties at low pH and a protease-resistant N-terminal domain at pH 4 and pH 8 comprising residues 63-193. To explore the mechanism of action of StAR we investigated the structural properties of the bacterially expressed N-terminal domain (63-193 StAR) using CD, limited proteolysis and NMR. Far- and near-UV CD showed that the amount of secondary structure was greater at acidic than at neutral pH, but there was little tertiary structure at any pH. Unlike 63-193 StAR liberated from N-62 StAR by proteolysis, biosynthetic 63-193 StAR was no longer resistant to trypsin or proteinase K at pH 7, or to pepsin at pH 4. Addition of trifluoroethanol and SDS increased secondary structure at pH 7, and dodecylphosphocholine and CHAPS increased secondary structure at pH 2, pH 4 and pH 7. However, none of these conditions induced tertiary structure, as monitored by near-UV CD or NMR. Liposomes of phosphatidylcholine, phosphatidylserine and their mixture increased secondary structure of 63-193 StAR at pH 7, as monitored by far-UV CD, and stable protein-liposome complexes were identified by gel-permeation chromatography. These results provide further evidence that the N-terminal domain of StAR is a molten globule, and provide evidence that this conformation facilitates the interaction of the N-terminal domain of StAR with membranes. We suggest that this interaction is the key to understanding the mechanism of StAR's action.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule.

The steroidogenic acute regulatory protein (StAR) increases the movement of cholesterol from the outer to the inner membrane of adrenal and gonadal mitochondria, thus providing the substrate for steroid hormone biosynthesis. Deletion of 62 amino-terminal aa produces a cytoplasmic form of StAR (N-62 StAR) that lacks the mitochondrial leader sequence but retains full activity and appears to act a...

متن کامل

Diazinon interrupts ovarian steroidogenic acute regulatory (StAR) gene transcription in gonadotropin-stimulated rat model

Organophosphate pesticides are considered as endocrine disruptors that interfere with reproductive functions. The corpus luteum (CL) is a transient endocrine gland that produces progesterone, a crucial hormone for a successful beginning and maintenance of pregnancy. Steroidogenic acute regulatory protein (StAR) facilitates the rate-limiting transfer of cholesterol from the outer mitochondrial m...

متن کامل

Diazinon interrupts ovarian steroidogenic acute regulatory (StAR) gene transcription in gonadotropin-stimulated rat model

Organophosphate pesticides are considered as endocrine disruptors that interfere with reproductive functions. The corpus luteum (CL) is a transient endocrine gland that produces progesterone, a crucial hormone for a successful beginning and maintenance of pregnancy. Steroidogenic acute regulatory protein (StAR) facilitates the rate-limiting transfer of cholesterol from the outer mitochondrial m...

متن کامل

Structural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c

Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...

متن کامل

Stereochemical Trajectories of a Two-Component Regulatory System PmrA/B in a Colistin-Resistant Acinetobacter baumannii Clinical Isolate

Background: There is limited information on the 3D prediction and modeling of the colistin resistance-associated proteins PmrA/B TCS in Acinetobacter baumannii. We aimed to evaluate the stereochemical structure and domain characterization of PmrA/B in an A. baumannii isolate resistant to high-level colistin, using bioinformatics tools. Methods: The species of the isolate and its susceptibility ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 356 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2001