Combinatorial Diophantine Equations and a Refinement of a Theorem on Separated Variables Equations
نویسندگان
چکیده
We look at Diophantine equations arising from equating classical counting functions such as perfect powers, binomial coefficients and Stirling numbers of the first and second kind. The proofs of the finiteness statements that we give use a variety of methods from modern number theory, such as effective and ineffective tools from Diophantine approximation. As a tool for one part of the statements we establish a theoretical result that gives a more precise description on the structure of the solution set in the theorem, due to Bilu and Tichy, on Diophantine equations with separate variables in the case when infinitely many solutions exist.
منابع مشابه
A Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$
In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملSome extensions of Darbo's theorem and solutions of integral equations of Hammerstein type
In this brief note, using the technique of measures of noncompactness, we give some extensions of Darbo fixed point theorem. Also we prove an existence result for a quadratic integral equation of Hammerstein type on an unbounded interval in two variables which includes several classes of nonlinear integral equations of Hammerstein type. Furthermore, an example is presented to show the effic...
متن کاملOn the Decidability of Diophantine Problems in Combinatorial Geometry
In spite of Matiyasevic's solution to Hubert's 10th problem some fifteen years ago it is still unknown whether there exists an algorithm to decide the solvability of diophantine equations within the field of rational numbers. In this note we show the equivalence of this problem with a conjecture of B. Grünbaum [6] on rational coordinatizability in combinatorial geometry. Such an algorithm exist...
متن کاملEfficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations
The use of Craig interpolants has enabled the development of powerful hardware and software model checking techniques. Efficient algorithms are known for computing interpolants in rational and real linear arithmetic. We focus on subsets of integer linear arithmetic. Our main results are polynomial time algorithms for obtaining proofs of unsatisfiability and interpolants for conjunctions of line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012