TRPV4-mediated trigeminal pain: behavior assessments and mechanisms
نویسندگان
چکیده
Trigeminal pain represents one of the worst pains that humans can suffer. One of the obstacles towards development of rationally targeted therapies is rooted in shortcomings of available animal models for trigeminal pain. Another roadblock is lack of clear understanding of molecular and cellular mechanisms that underlie this type of pain. TRPV4 is a polymodally activated Ca-permeable nonselective cation channel that is activated by a variety of factors, including chemical, osmotic, mechanical, moderate heat and low pH stimuli. Previous studies detected that it is highly expressed in trigeminal ganglion (TG) sensory neurons with small diameter, indicating it might function in trigeminally mediated pain. We first demonstrated that the TRPV4 channel is critical for TMJ-inflammation evoked pain behavior in mice, and that TG pro-nociceptive changes are Trpv4-dependent. As a quantitative metric, bite force was recorded as evidence of masticatory sensitization, in keeping with human translational studies. In Trpv4 mice with TMJinflammation, attenuation of bite force was significantly reduced compared to WTs. TMJ-inflammation and mandibular skeletal changes were apparent after CFA injections, but remarkably independent of Trpv4 genotype. Intriguingly, as a result of TMJ-inflammation, WT mice exhibited significant up-regulation of TRPV4 and phospho-ERK in TMJ-innervating TG neurons, absent in Trpv4 mice. Mice with genetically impaired MEK/ERK phosphorylation in neurons showed a similar resistance to reduction of bite-force as Trpv4 mice. Thus, TRPV4 is necessary for masticatory sensitization in TMJ-inflammation, and likely functions up-stream of MEK/ERK phosphorylation in TG neurons in-vivo. Next, we tested whether TRPV4 ion channels might be critical for irritant-evoked trigeminal pain behavior. Our results demonstrate TRPV4 to be critically involved in trigeminal nocifensive behavior evoked by whisker-pad injections of formalin. We have used Trpv4 mice and TRPV4-specific antagonists in mice to support this conclusion. Furthermore, our results imply TRPV4 to activate MEK-ERK in TG neurons. Importantly, cellular studies suggest that TRPV4 can be activated directly by formalin to gate Ca ions. Last, we developed a novel behavioral assay of water licking for assessing trigeminal irritant pain. We found that formalin-induced irritation in the V2 territory decreased the water licking times and increased the latency of first water licking in WT, which were significantly attenuated in Trpv4 mice. Taken together, our results imply that TRPV4 represents a novel pro-nociceptive target in trigeminal pain including TMJ, and thus a potential target for novel pain alleviating strategies for TMJ and other trigeminal pain disorders.
منابع مشابه
TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor
Detection of external irritants by head nociceptor neurons has deep evolutionary roots. Irritant-induced aversive behavior is a popular pain model in laboratory animals. It is used widely in the formalin model, where formaldehyde is injected into the rodent paw, eliciting quantifiable nocifensive behavior that has a direct, tissue-injury-evoked phase, and a subsequent tonic phase caused by neur...
متن کاملTemporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion.
Temporomandibular joint disorder (TMJD) is known for its mastication-associated pain. TMJD is medically relevant because of its prevalence, severity, chronicity, the therapy-refractoriness of its pain, and its largely elusive pathogenesis. Against this background, we sought to investigate the pathogenetic contributions of the calcium-permeable TRPV4 ion channel, robustly expressed in the trigem...
متن کاملModeling TMJD pain in the laboratory mouse: role of TRP ion channels
Trigeminal pain syndromes such as temporomandibular joint (TMJ) pain appear to have a particular potential to affect patients in a devastating manner. Prevalence of trigeminal pain disorders in the US is estimated at 2030x10, at >50-75x10 including headaches/migraine. Neural circuit malfunction and maladaptive plasticity arise from altered primary sensory afferents. We have focused on a nerve c...
متن کاملSmall molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain
TRPV4 ion channels represent osmo-mechano-TRP channels with pleiotropic function and wide-spread expression. One of the critical functions of TRPV4 in this spectrum is its involvement in pain and inflammation. However, few small-molecule inhibitors of TRPV4 are available. Here we developed TRPV4-inhibitory molecules based on modifications of a known TRPV4-selective tool-compound, GSK205. We not...
متن کاملAttenuation of TRPV1 and TRPV4 Expression and Function in Mouse Inflammatory Pain Models Using Electroacupuncture
Although pain is a major human affliction, our understanding of pain mechanisms is limited. TRPV1 (transient receptor potential vanilloid subtype 1) and TRPV4 are two crucial receptors involved in inflammatory pain, but their roles in EA- (electroacupuncture-) mediated analgesia are unknown. We injected mice with carrageenan (carra) or a complete Freund's adjuvant (CFA) to model inflammatory pa...
متن کامل