Mutagenicity of oxidized DNA precursors in living cells: Roles of nucleotide pool sanitization and DNA repair enzymes, and translesion synthesis DNA polymerases.

نویسنده

  • Hiroyuki Kamiya
چکیده

The base moieties of DNA precursors in the nucleotide pool are subjected to oxidative damage, and the formation of damaged DNA precursors is an important source of mutagenesis. 8-Hydroxy-2'-deoxyguanosine 5'-triphosphate, also known by the name of its keto-enol tautomer as 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate, and 2-hydroxy-2'-deoxyadenosine 5'-triphosphate have been identified as the major products of in vitro oxidation reactions. The mutagenicities of these damaged precursors in living cells will be summarized in this review. In addition, the roles of the nucleotide pool sanitization and DNA repair enzymes, and the translesion synthesis DNA polymerases will be described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair

DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA...

متن کامل

Mismatch repair protein MSH2 regulates translesion DNA synthesis following exposure of cells to UV radiation

Translesion DNA synthesis (TLS) can use specialized DNA polymerases to insert and/or extend nucleotides across lesions, thereby limiting stalled replication fork collapse and the potential for cell death. Recent studies have shown that monoubiquitinated proliferating cell nuclear antigen (PCNA) plays an important role in recruitment of Y-family TLS polymerases to stalled replication forks after...

متن کامل

Nucleotide excision repair or polymerase V-mediated lesion bypass can act to restore UV-arrested replication forks in Escherichia coli.

Nucleotide excision repair and translesion DNA synthesis are two processes that operate at arrested replication forks to reduce the frequency of recombination and promote cell survival following UV-induced DNA damage. While nucleotide excision repair is generally considered to be error free, translesion synthesis can result in mutations, making it important to identify the order and conditions ...

متن کامل

A real-time fluorescence method for enzymatic characterization of specialized human DNA polymerases

Specialized DNA polymerases are involved in DNA synthesis during base-excision repair and translesion synthesis across a wide range of chemically modified DNA templates. Notable features of these enzymes include low catalytic efficiency, low processivity and low fidelity. Traditionally, in vitro studies of these enzymes have utilized radiolabeled substrates and gel electrophoretic separation of...

متن کامل

Databases and Bioinformatics Tools for the Study of DNA Repair

DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mutation research

دوره 703 1  شماره 

صفحات  -

تاریخ انتشار 2010