Stochastic Conjugate Gradient Algorithm with Variance Reduction

نویسندگان

  • Xiao-Bo Jin
  • Xu-Yao Zhang
  • Kaizhu Huang
  • Guanggang Geng
چکیده

Conjugate gradient methods are a class of important methods for solving linear equations and nonlinear optimization. In our work, we propose a new stochastic conjugate gradient algorithm with variance reduction (CGVR) and prove its linear convergence with the Fletcher and Revves method for strongly convex and smooth functions. We experimentally demonstrate that the CGVR algorithm converges faster than its counterparts for six large-scale optimization problems that may be convex, non-convex or non-smooth, and its AUC (Area Under Curve) performance with L2-regularized L2-loss is comparable to that of LIBLINEAR but with significant improvement in computational efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Variance Reduction for Policy Gradient Estimation

Recent advances in policy gradient methods and deep learning have demonstrated their applicability for complex reinforcement learning problems. However, the variance of the performance gradient estimates obtained from the simulation is often excessive, leading to poor sample efficiency. In this paper, we apply the stochastic variance reduced gradient descent (SVRG) technique [1] to model-free p...

متن کامل

Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure

Stochastic optimization algorithms with variance reduction have proven successful for minimizing large finite sums of functions. However, in the context of empirical risk minimization, it is often helpful to augment the training set by considering random perturbations of input examples. In this case, the objective is no longer a finite sum, and the main candidate for optimization is the stochas...

متن کامل

Asynchronous Stochastic Gradient Descent with Variance Reduction for Non-Convex Optimization

We provide the first theoretical analysis on the convergence rate of the asynchronous stochastic variance reduced gradient (SVRG) descent algorithm on nonconvex optimization. Recent studies have shown that the asynchronous stochastic gradient descent (SGD) based algorithms with variance reduction converge with a linear convergent rate on convex problems. However, there is no work to analyze asy...

متن کامل

Variational Inference on Deep Exponential Family by using Variational Inferences on Conjugate Models

In this paper, we propose a new variational inference method for deep exponentialfamily (DEF) models. Our method converts non-conjugate factors in a DEF model to easy-to-compute conjugate exponential-family messages. This enables local and modular updates similar to variational message passing, as well as stochastic natural-gradient updates similar to stochastic variational inference. Such upda...

متن کامل

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.09979  شماره 

صفحات  -

تاریخ انتشار 2017