Critical Point Theory Applied to a Class of the Systems of the Superquadratic Wave Equations
نویسنده
چکیده
We show the existence of a nontrivial solution for a class of the systems of the superquadratic nonlinear wave equations with Dirichlet boundary conditions and periodic conditions with a superquadratic nonlinear terms at infinity which have continuous derivatives. We approach the variational method and use the critical point theory which is the Linking Theorem for the strongly indefinite corresponding functional.
منابع مشابه
An Application of Category Theory to a Class of the Systems of the Superquadratic Wave Equations
We investigate the nontrivial solutions for a class of the systems of the superquadratic nonlinear wave equations with Dirichlet boundary condition and periodic condition with a superquadratic nonlinear terms at infinity which have continuous derivatives. We approach the variational method and use the critical point theory on the manifold, in terms of the limit relative category of the sublevel...
متن کاملOn a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations
Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.
متن کاملSome generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness
In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملOn the $c_{0}$-solvability of a class of infinite systems of functional-integral equations
In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...
متن کامل