The type II isoform of bovine brain protein L-isoaspartyl methyltransferase has an endoplasmic reticulum retention signal (...RDEL) at its C-terminus.

نویسندگان

  • S M Potter
  • B A Johnson
  • A Henschen
  • D W Aswad
  • A W Guzzetta
چکیده

Bovine brain is known to contain two major isoforms of protein L-isoaspartyl methyltransferase (PIMT), an enzyme that facilitates repair of atypical L-isoaspartyl peptide bonds in proteins. Although the two isoforms can be separated by anion-exchange chromatography, they appear to have similar, if not identical, substrate specificities in vitro. The more basic type I isoform has been extensively characterized, and its complete sequence has been reported. The present study was undertaken in an attempt to understand the structural and functional uniqueness of the more acidic type II isoform. Electrospray mass spectrometry of the intact enzymes revealed that the type II isoform is approximately 43 amu heavier than the type I isoform. Cyanogen bromide cleavage followed by HPLC with on-line mass analysis revealed that the type II isoform contains a unique C-terminal fragment which is 43 amu heavier than the corresponding fragment from the type I isoform. Amino acid composition analysis and direct sequencing of this fragment indicate that the type II isoform ends in the sequence ...RDEL, while the type I is known to end in ...RWK. Since ...RDEL, like ...KDEL, serves as an effective endoplasmic reticulum retention signal, we propose that the type II isoform serves to repair damaged proteins within the endoplasmic reticulum or, perhaps, within some other specialized compartment of the cell. Comparison of the protein sequences of the two bovine brain isoforms to DNA sequences for rodent PIMT reported by others suggests that the type II isoform may be produced by splicing within the codon for Arg224.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retention of a type II surface membrane protein in the endoplasmic reticulum by the Lys-Asp-Glu-Leu sequence.

Soluble luminal proteins of the endoplasmic reticulum (ER) are known to be retained by a tetrapeptide retention signal, KDEL. We report in this communication that the KDEL sequence when appended to the carboxy terminus of a cell surface membrane protein, dipeptidyl peptidase IV (DPPIV), resulted in its retention in the endoplasmic reticulum of transfected Madin-Darby canine kidney cells as asse...

متن کامل

The endoplasmic reticulum retention signal of the E3/19K protein of adenovirus type 2 consists of three separate amino acid segments at the carboxy terminus

The E3/19K protein of adenovirus type 2 is a resident of the ER. Immediately after synthesis it binds to human major histocompatibility complex class I antigens and prevents their departure from the ER compartment. The ER retention signal of the E3/19K protein is contained within the 15 amino acids that protrude on the cytoplasmic side at the carboxy terminus of the protein. To define the ER re...

متن کامل

A dual role for COOH-terminal lysine residues in pre-Golgi retention and endocytosis of ERGIC-53.

ERGIC-53 (former designation, p53) is a 53-kDa nonglycosylated, dimeric, and hexameric type I membrane protein that has been established as a marker protein for a tubulovesicular intermediate compartment in which protein transport from the endoplasmic reticulum to the Golgi apparatus is blocked at 15 degrees C. Although ERGIC-53 is not a resident protein of the rough endoplasmic reticulum its c...

متن کامل

Considerations in the Identification of Endogenous Substrates for Protein L-Isoaspartyl Methyltransferase: The Case of Synuclein

Protein L-isoaspartyl methyltransferase (PIMT) repairs abnormal isoaspartyl peptide bonds in age-damaged proteins. It has been reported that synuclein, a protein implicated in neurodegenerative diseases, is a major target of PIMT in mouse brain. To extend this finding and explore its possible relevance to neurodegenerative diseases, we attempted to determine the stoichiometry of isoaspartate ac...

متن کامل

The Saccharomyces cerevisiae prenylcysteine carboxyl methyltransferase Ste14p is in the endoplasmic reticulum membrane.

Eukaryotic proteins containing a C-terminal CAAX motif undergo a series of posttranslational CAAX-processing events that include isoprenylation, C-terminal proteolytic cleavage, and carboxyl methylation. We demonstrated previously that the STE14 gene product of Saccharomyces cerevisiae mediates the carboxyl methylation step of CAAX processing in yeast. In this study, we have investigated the su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 31 27  شماره 

صفحات  -

تاریخ انتشار 1992