Depth from Defocus via Discriminative Metric Learning
نویسندگان
چکیده
In this paper, we propose a discriminative learning-based method for recovering the depth of a scene from multiple defocused images. The proposed method consists of a discriminative learning phase and a depth estimation phase. In the discriminative learning phase, we formalize depth from defocus (DFD) as a multi-class classification problem which can be solved by learning the discriminative metrics from the synthetic training set by minimizing a criterion function. To enhance the discriminative and generalization performance of the learned metrics, the criterion takes both within-class and between-class variations into account, and incorporates margin constraints. In the depth estimation phase, for each pixel, we compute the N discriminative functions and determine the depth level according to the minimum discriminant value. Experimental results on synthetic and real images show the effectiveness of our method in providing a reliable estimation of the depth of a scene.
منابع مشابه
Defocus test and defocus correction in full-field optical coherence tomography.
We report experimental evidence and correction of defocus in full-field optical coherence tomography of biological samples owing to mismatch of the refractive index of biological tissues and water. Via a metric based on the image quality, we demonstrate that we are able to compensate this index-induced defocus and to recover a sharp image in depth.
متن کاملLearning Discriminative Metrics via Generative Models and Kernel Learning
Metrics specifying distances between data points can be learned in a discriminative manner or fromgenerative models. In this paper, we show how to unify generative and discriminative learning of met-rics via a kernel learning framework. Specifically, we learn local metrics optimized from parametricgenerative models. These are then used as base kernels to construct a global kerne...
متن کاملA Learning-based Framework for Hybrid Depth-from-Defocus and Stereo Matching
Depth from defocus (DfD) and stereo matching are two most studied passive depth sensing schemes. The techniques are essentially complementary: DfD can robustly handle repetitive textures that are problematic for stereo matching whereas stereo matching is insensitive to defocus blurs and can handle large depth range. In this paper, we present a unified learning-based technique to conduct hybrid ...
متن کاملThe Effect of Pooling and Evaluation Depth on Metric Stability
The profusion of information retrieval effectiveness metrics has inspired the development of meta-evaluative criteria for choosing between them. One such criterion is discriminative power; that is, the proportion of system pairs whose difference in effectiveness is found statistically significant. Studies of discriminative power frequently find normalized discounted cumulative gain (nDCG) to be...
متن کامل