A Threshold Stochastic Volatility Model with Realized Volatility
نویسنده
چکیده
Rapid development in the computer technology has made the financial transaction data visible at an ultimate limit level. The realized volatility, as a proxy for the ”true” volatility, can be constructed using the high frequency data. This paper extends a threshold stochastic volatility specification proposed in So, Li and Lam (2002) by incorporating the high frequency volatility measures. Due to the availability of the volatility time series, the parameters’ estimation can be easily implemented via the standard maximum likelihood estimation (MLE) rather than using the simulated Bayesian methods. In the Monte Carlo section, several mis-specification and sensitivity experiments are conducted. The proposed methodology shows good performance according to the Monte Carlo results. In the empirical study, three stock indices are examined under the threshold stochastic volatility structure. Empirical results show that in different regimes, the returns and volatilities exhibit asymmetric behavior. In addition, this paper allows the threshold in the model to be flexible and uses a sequential optimization based on MLE to search for the ”optimal” threshold value. We find that the model with a flexible threshold is always preferred to the model with a fixed threshold according to the log-likelihood measure. Interestingly, the ”optimal” threshold is found to be stable across different sampling realized volatility measures.
منابع مشابه
Modeling Gold Volatility: Realized GARCH Approach
F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...
متن کاملRealized stochastic volatility with leverage and long memory
! ! The daily return and the realized volatility are simultaneously modeled in the stochastic volatility model with leverage and long memory. In addition to the stochastic volatility model with leverage for the daily returns, ARFIMA process is jointly considered for the realized volatilities. Using a state space representation of the model, we estimate parameters by Markov chain Monte Carlo met...
متن کاملForecasting return volatility in the presence of microstructure noise
Measuring and forecasting volatility of asset returns is very important for asset trading and risk management. There are various forms of volatility estimates, including implied volatility, realized volatility and volatility assumed under stochastic volatility models and GARCH models. Research has shown that these different methods are closely related but have different perspectives, strengths ...
متن کاملOption pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کاملRealized Volatility in Noisy Prices: a MSRV approach
Volatility is the primary measure of risk in modern finance and volatility estimation and inference has attracted substantial attention in the recent financial econometric literature, especially in high-frequency analyses. High-frequency prices carry a significant amount of noise. Therefore, there are two volatility components embedded in the returns constructed using high frequency prices: the...
متن کامل