On removable edges in 3-connected cubic graphs

نویسندگان

  • Jean-Luc Fouquet
  • Henri Thuillier
چکیده

A removable edge in a 3−connected cubic graph G is an edge e = uv such that the cubic graph obtained from G \ {u, v} by adding an edge between the two neighbours of u distinct from v and an edge between the two neighbours of v disctinct from u is still 3−connected. Li and Wu [3] showed that a spanning tree in a 3−connected cubic graph avoids at least two removable edges, and Kang, Li and Wu [4] showed that a spanning tree contains at least two removable edges. We show here how to obtain these results easily from the structure of the sets of non removable edges and we give a characterization of the extremal graphs for these two results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removable Edges in Longest Cycles of 4-Connected Graphs

Let G be a 4-connected graph. For an edge e of G, we do the following operations on G: first, delete the edge e from G, resulting the graph G e; second, for all vertices x of degree 3 in G e, delete x from G e and then completely connect the 3 neighbors of x by a triangle. If multiple edges occur, we use single edges to replace them. The final resultant graph is denoted by G e. If G e is 4-conn...

متن کامل

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

Removable Cycles in Planar Graphs

All graphs considered are finite and loopless, but may contain multiple edges. By a simple graph we shall mean a graph without multiple edges. It follows easily from a result of Mader [4, Theorem 1] that if G is a ^-connected simple graph of minimum degree at least k+2, then G contains a cycle C such that G-E(C) is ^-connected. Stronger results exist for the special case of 2-connected simple g...

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

The number of removable edges in a 4-connected graph

Let G be a 4-connected graph. For an edge e of G; we do the following operations on G: first, delete the edge e from G; resulting the graph G e; second, for all the vertices x of degree 3 in G e; delete x from G e and then completely connect the 3 neighbors of x by a triangle. If multiple edges occur, we use single edges to replace them. The final resultant graph is denoted by G~e: If G~e is st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1991