Integrated Detectors for Embedded Optical Interconnections on Electrical Boards, Modules, and Integrated Circuits

نویسندگان

  • Sang-Yeon Cho
  • Martin A. Brooke
چکیده

Significant opportunities exist for optical interconnections at the board, module, and chip level if compact, low-loss, high-data-rate optical interconnections can be integrated into these electrical interconnection systems. To create such an integrated optoelectronic/electronic microsystem, mask-based alignment of the optical interconnection waveguide, optoelectronic active devices, and interface circuits is attractive from a packaging alignment standpoint. This paper describes an integration process for creating optical interconnections which can be integrated in a postprocessing format onto standard boards, modules, and integrated circuits. These optical interconnections utilize active thin-film optoelectronic components embedded in the waveguide/interconnection substrate, thus eliminating the need for optical beam turning elements and their alignment, and providing an electrical output on the substrate from an optical interconnection. These embedded optical interconnections are reported herein using BCB polymer optical waveguides with embedded InGaAs-based thin-film inverted metal–semiconductor–metal (I-MSM) photodetectors on an Si substrate. These interconnections have been fabricated and tested, and the coupled optical signal from the waveguide to the embedded photodetector was theoretically modeled at 56.4%, which was supported by an experimental estimate of 47.8%. The measured full-width at half maximum of the electrical pulse from the MSM photodetector embedded in the waveguide was 16.73 ps for an input 500-fs optical laser pulse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Interconnections on Electrical Boards Using Embedded Active Optoelectronic Components

Significant opportunities are emerging for optical interconnections at the board, module, and chip level if compact, low loss, high data rate optical interconnections can be integrated into these electrical interconnection systems. This paper describes an integration process for creating optical interconnections which can be integrated in a postprocessing format onto standard boards, modules, a...

متن کامل

Parallel optical interconnects with mixed-signal OEIC and fibre arrays for high-speed communication

We present a system for direct parallel optical data communication between integrated circuits on neighboured printed circuit boards based on a monolithic integrated CMOS smart pixel array, fibre arrays, and VCSELs. The advantage of our system versus backplane systems is the direct data transfer through the space avoiding planar and area consuming interconnections. The detector chip allows a da...

متن کامل

Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter

Photonic crystal ring resonators (PCRRs) are traditional structures fordesigning optical channel drop filters. In this paper, Photonic crystal channel drop filter(CDFs) with a new configuration of ring resonator is presented. The structure is made ofa square lattice of silicon rods with the refractive index nsi=3. 4 which are perforated inair with refractive index nair=1. Calculations of band s...

متن کامل

A Three-Layer 3-D Silicon System Using Through-Si Vertical Optical Interconnections and Si CMOS Hybrid Building Blocks

We present for the first time a three-dimensional (3-D) Si CMOS interconnection system consisting of three layers of optically interconnected hybrid integrated Si CMOS transceivers. The transceivers were fabricated using 0.8m digital Si CMOS foundry circuits and were integrated with long wavelength InP-based emitters and detectors for through-Si vertical optical interconnections. The optical tr...

متن کامل

A MEMS Capacitive Microphone Modelling for Integrated Circuits

In this paper, a model for MEMS capacitive microphone is presented for integrated circuits.  The microphone has a diaphragm thickness of 1 μm, 0.5 × 0.5 mm2 dimension, and an air gap of 1.0 μm. Using the analytical and simulation results, the important features of MEMS capacitive microphone such as pull-in voltage and sensitivity are obtained 3.8v and 6.916 mV/Pa, respectively while there is no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001