Time-dependent ultrasound echo changes occur in tendon during viscoelastic testing.
نویسندگان
چکیده
The viscoelastic behavior of tendons has been extensively studied in vitro. A noninvasive method by which to acquire mechanical data would be highly beneficial, as it could lead to the collection of viscoelastic data in vivo. Our lab has previously presented acoustoelasticity as an alternative ultrasound-based method of measuring tendon stress and strain by reporting a relationship between ultrasonic echo intensity (B mode ultrasound image brightness) and mechanical behavior of tendon under pseudoelastic in vitro conditions [Duenwald, S., Kobayashi, H., Frisch, K., Lakes, R., and Vanderby Jr, R., 2011, "Ultrasound Echo is Related to Stress and Strain in Tendon," J. Biomech., 44(3), pp. 424-429]. Viscoelastic properties of the tendons were not examined in that study, so the presence of time-dependent echo intensity changes has not been verified. In this study, porcine flexor tendons were subjected to relaxation and cyclic testing while ultrasonic echo response was recorded. We report that time- and strain history-dependent mechanical properties during viscoelastic testing are manifested in ultrasonic echo intensity changes. We also report that the patterns of the echo intensity changes do not directly mimic the patterns of viscoelastic load changes, but the intensity changed in a repeatable (and therefore predictable) fashion. Although mechanisms need further elucidation, viscoelastic behavior can be anticipated from echo intensity changes. This phenomenon could potentially lead to a more extensive characterization of in vivo tissue behavior.
منابع مشابه
Strain-induced damage reduces echo intensity changes in tendon during loading.
Tendon functionality is related to its mechanical properties. Tendon damage leads to a reduction in mechanical strength and altered biomechanical behavior, and therefore leads to compromised ability to carry out normal functions such as joint movement and stabilization. Damage can also accumulate in the tissue and lead to failure. A noninvasive method with which to measure such damage potential...
متن کاملUltrasound echo is related to stress and strain in tendon.
The mechanical behavior of tendons has been well studied in vitro. A noninvasive method to acquire mechanical data would be highly beneficial. Elastography has been a promising method of gathering in vivo tissue mechanical behavior, but it has inherent limitations. This study presents acoustoelasticity as an alternative ultrasound-based method of measuring tendon stress and strain by reporting ...
متن کاملToo Much Work: Revisiting Ultrasound-based Estimates of Achilles Tendon Energy Storage and Return
INTRODUCTION Ultrasound imaging is increasingly used with motion and force data to quantify tendon dynamics and to understand the functional role of tendons during human and other animal movement. Frequently, tendon dynamics are estimated indirectly from measures of muscle kinematics (by subtracting muscle length from muscle-tendon unit length), but there is mounting evidence that this approach...
متن کاملOn the ultrasonic properties of tendon.
The strong dependence of tendon echogenicity on insonation angle is explored by analyzing echo spectra. Combining echo spectra with high-resolution images from several modalities reveals that fluid spaces surrounding fascicles and bundles are likely sources of ultrasonic scatter. Mathematical models of tendon structure are proposed to explain how the anisotropic microstructure of tendon gives r...
متن کاملTendon fascicles exhibit a linear correlation between Poisson's ratio and force during uniaxial stress relaxation.
The underlying mechanisms for the viscoelastic behavior of tendon and ligament tissue are poorly understood. It has been suggested that both a flow-dependent and flow-independent mechanism may contribute at different structural levels. We hypothesized that the stress relaxation response of a single tendon fascicle is consistent with the flow-dependent mechanism described by the biphasic theory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanical engineering
دوره 134 11 شماره
صفحات -
تاریخ انتشار 2012