Singularities of Lagrangian Mean Curvature Flow: Zero-maslov Class Case

نویسندگان

  • ANDRÉ NEVES
  • Jingyi Chen
  • Jiayu Li
چکیده

We study singularities of Lagrangian mean curvature flow in C when the initial condition is a zero-Maslov class Lagrangian. We start by showing that, in this setting, singularities are unavoidable. More precisely, we construct Lagrangians with arbitrarily small Lagrangian angle and Lagrangians which are Hamiltonian isotopic to a plane that, nevertheless, develop finite time singularities under mean curvature flow. We then prove two theorems regarding the tangent flow at a singularity when the initial condition is a zero-Maslov class Lagrangian. The first one (Theorem A) states that that the rescaled flow at a singularity converges weakly to a finite union of area-minimizing Lagrangian cones. The second theorem (Theorem B) states that, under the additional assumptions that the initial condition is an almost-calibrated and rational Lagrangian, connected components of the rescaled flow converges to a single area-minimizing Lagrangian cone, as opposed to a possible nonarea-minimizing union of area-minimizing Lagrangian cones. The latter condition is dense for Lagrangians with finitely generated H1(L, Z).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean Curvature Flow and Lagrangian Embeddings

In this note we provide examples of compact embedded lagrangians in Cn for any n ≥ 2 that under mean curvature flow develop singularities in finite time. When n is odd the lagrangians can be taken to be orientable. By gluing these lagrangians onto a special lagrangian embedding L we provide examples of compact embedded lagrangians in a Calabi-Yau manifold that under mean curvature flow develop ...

متن کامل

A Note on Mean Curvature, Maslov Class and Symplectic Area of Lagrangian Immersions

In this note we prove a simple relation between the mean curvature form, symplectic area, and the Maslov class of a Lagrangian immersion in a Kähler-Einstein manifold. An immediate consequence is that in KählerEinstein manifolds with positive scalar curvature, minimal Lagrangian immersions are monotone.

متن کامل

Residue Classes of Lagrangian Subbundles and Maslov Classes

For Lagrangian subbundles with singularities in symplectic vector bundles, explicit formulas of relation between their residue classes and Maslov classes outside singularities are obtained. Then a Lagrangian subbundle with singularity is constructed where all possible Maslov classes are nonzero but residue classes vanish for dimension > 2 . Moreover, a Lagrangian immersion with singularity is c...

متن کامل

Singularities of Symplectic and Lagrangian Mean Curvature Flows

In this paper we study the singularities of the mean curvature flow from a symplectic surface or from a Lagrangian surface in a Kähler-Einstein surface. We prove that the blow-up flow Σ∞ s at a singular point (X0, T0) of a symplectic mean curvature flow Σt or of a Lagrangian mean curvature flow Σt is a non trivial minimal surface in R, if Σ∞ −∞ is connected.

متن کامل

Maslov Class Rigidity for Lagrangian Submanifolds via Hofer’s Geometry

In this work, we establish new rigidity results for the Maslov class of Lagrangian submanifolds in large classes of closed and convex symplectic manifolds. Our main result establishes upper bounds for the minimal Maslov number of displaceable Lagrangian submanifolds which are product manifolds whose factors each admit a metric of negative sectional curvature. Such Lagrangian submanifolds exist ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008