Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin
نویسندگان
چکیده
Current research on wound infections is primarily conducted on animal models, which limits direct transferability of these studies to humans. Some of these limitations can be overcome by using-otherwise discarded-skin from cosmetic surgeries. Superficial wounds are induced in fresh ex vivo skin, followed by intradermal injection of Pseudomonas aeruginosa under the wound. Subsequently, the infected skin is incubated for 20 hours at 37°C and the CFU/wound are determined. Within 20 hours, the bacteria count increased from 107 to 109 bacteria per wound, while microscopy revealed a dense bacterial community in the collagen network of the upper wound layers as well as numerous bacteria scattered in the dermis. At the same time, IL-1alpha and IL-1beta amounts increased in all infected wounds, while-due to bacteria-induced cell lysis-the IL-6 and IL-8 concentrations rose only in the uninfected samples. High-dosage ciprofloxacin treatment resulted in a decisive decrease in bacteria, but consistently failed to eradicate all bacteria. The main benefits of the ex vivo wound model are the use of healthy human skin, a quantifiable bacterial infection, a measureable donor-dependent immune response and a good repeatability of the results. These properties turn the ex vivo wound model into a valuable tool to examine the mechanisms of host-pathogen interactions and to test antimicrobial agents.
منابع مشابه
Pseudomonas aeruginosa-induced infection and degradation of human wound fluid and skin proteins ex vivo are eradicated by a synthetic cationic polymer.
OBJECTIVES Antimicrobial peptides are important effectors of innate immunity. Bacteria display multiple defence mechanisms against these peptides. For example, Pseudomonas aeruginosa releases potent proteinases that inactivate the human cathelicidin LL-37. Hence, in conditions characterized by persistent bacterial colonization, such as in P. aeruginosa-infected skin wounds, there is a need for ...
متن کاملThyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin
There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combi...
متن کامل- MODELS TO INVESTIGATE HUMAN WOUND HEALING - Development of an in vivo mouse model to study human wound healing
Scar formation is a frequently occurring unwanted result of healing of a skin wound. The mechanisms causing scar formation are not fully understood, although many studies have attempted to unravel this issue. Most of these studies were performed in animals or in in vitro models, but both have major drawbacks. In the present study we aimed to develop a representative model in which the human wou...
متن کاملHucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing.
Mesenchymal stem cell-derived exosomes (MSC-Ex) play important roles in tissue injury repair, however, the roles of MSC-Ex in skin damage repair and its mechanisms are largely unknown. Herein, we examined the benefit of human umbilical cord MSC-derived exosome (hucMSC-Ex) in cutaneous wound healing using a rat skin burn model. We found that hucMSC-Ex-treated wounds exhibited significantly accel...
متن کاملThe effect of ZnO nanoparticles on bacterial load of experimental infectious wounds contaminated with Staphylococcus aureus in mice
Objective (s): Bacterial infection is an important cause of delayed wound healing. Staphylococcus aureus (S. aureus) is the main agent causing these infections. Zinc Oxide (ZnO) nanoparticles have antibacterial activity and also accelerate the wound healing process. The aim of the present study is to evaluate the effect of ZnO nanoparticles on bacterial load reduction of the wound infection. M...
متن کامل