Tight closure’s failure to localize—a self-contained exposition

نویسنده

  • Paul Monsky
چکیده

We give a treatment of the Brenner-Monsky example based on polynomial algebra and linear algebra. No prior knowledge of tight closure theory, Hilbert-Kunz theory, algebraic geometry or local cohomology is assumed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PLANARITY IN LINEAR TIME Class notes

I give a self-contained exposition of a linear-time planarity algorithm of Shih and Hsu.

متن کامل

The Artinian Conjecture (following Djament, Putman, Sam, and Snowden)

This note provides a self-contained exposition of the proof of the artinian conjecture, following closely Djament’s Bourbaki lecture. The original proof is due to Putman, Sam, and Snowden.

متن کامل

Galois theory, graphs and free groups

A self-contained exposition is given of the topological and Galois-theoretic properties of the category of combinatorial 1-complexes, or graphs, very much in the spirit of Stallings [20]. A number of classical, as well as some new results about free groups are derived.

متن کامل

Shelah’s Singular Compactness Theorem

We present Shelah’s famous theorem in a version for modules, together with a self-contained proof and some examples. This exposition is based on lectures given at CRM in

متن کامل

خصوصیات شخصیتی معتادان مرد مراجعه به مراکز درمانی شهر تهران در سال 1385

Purpose: This is an analytical-descriptive study aimed at analyzing individual specifications of addicts who have gone to treatment centers of Tehran in the year 1385. Materials and Methods: Investigation members were all addicts admitted to treatment centers of Tehran, investigation method was random sampling, investigation place was Behzisty rehabilitating drug addicts and NGOs, the number o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009