Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases.

نویسندگان

  • Kaustav Das Gupta
  • Melanie R Shakespear
  • Abishek Iyer
  • David P Fairlie
  • Matthew J Sweet
چکیده

Macrophages have central roles in danger detection, inflammation and host defense, and consequently, these cells are intimately linked to most disease processes. Major advances in our understanding of the development and function of macrophages have recently come to light. For example, it is now clear that tissue-resident macrophages can be derived from either blood monocytes or through local proliferation of phagocytes that are originally seeded during embryonic development. Metabolic state has also emerged as a major control point for macrophage activation phenotypes. Herein, we review recent literature linking the histone deacetylase (HDAC) family of enzymes to macrophage development and activation, particularly in relation to these recent developments. There has been considerable interest in potential therapeutic applications for small molecule inhibitors of HDACs (HDACi), not only for cancer, but also for inflammatory and infectious diseases. However, the enormous range of molecular and cellular processes that are controlled by different HDAC enzymes presents a potential stumbling block to clinical development. We therefore present examples of how classical HDACs control macrophage functions, roles of specific HDACs in these processes and approaches for selective targeting of drugs, such as HDACi, to macrophages. Development of selective inhibitors of macrophage-expressed HDACs and/or selective delivery of pan HDACi to macrophages may provide avenues for enhancing efficacy of HDACi in therapeutic applications, while limiting unwanted side effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HDAC Inhibitors and Heat Shock Proteins (Hsps)

Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...

متن کامل

Epigenetic Control of Macrophage Shape Transition towards an Atypical Elongated Phenotype by Histone Deacetylase Activity

Inflammatory chronic pathologies are complex processes characterized by an imbalance between the resolution of the inflammatory phase and the establishment of tissue repair. The main players in these inflammatory pathologies are bone marrow derived monocytes (BMDMs). However, how monocyte differentiation is modulated to give rise to specific macrophage subpopulations (M1 or M2) that may either ...

متن کامل

Histone deacetylases as targets for treatment of multiple diseases.

HDACs (histone deacetylases) are a group of enzymes that deacetylate histones as well as non-histone proteins. They are known as modulators of gene transcription and are associated with proliferation and differentiation of a variety of cell types and the pathogenesis of some diseases. Recently, HDACs have come to be considered crucial targets in various diseases, including cancer, interstitial ...

متن کامل

Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function.

Histone deacetylases (HDACs) play a critical role in regulating gene expression and key biological processes. However, how HDACs are involved in innate immunity is little understood. Here, in this first systematic investigation of the role of HDACs in immunity, we show that HDAC inhibition by a small-molecule HDAC inhibitor (HDACi), LAQ824, alters Toll-like receptor 4 (TLR4)-dependent activatio...

متن کامل

Steroids and histone deacetylase in ventilation-induced gene transcription.

Histone acetylation and deacetylation promote and repress gene transcription, respectively. Recruitment of histone deacetylases (HDAC) to sites of inflammatory gene transcription has been proposed to explain part of the anti-inflammatory activity of steroids. To examine whether this concept extends to other inflammatory conditions, the current authors investigated the role of histone acetylatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical & translational immunology

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2016