Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history: When did Earth fi rst adopt a plate tectonics mode of behavior?
نویسنده
چکیده
Where plates converge, one-sided subduction generates two contrasting thermal environments in the subduction zone (low dT/dP) and in the arc and subduction zone backarc or orogenic hinterland (high dT/dP). This duality of thermal regimes is the hallmark of modern plate tectonics, which is imprinted in the ancient rock record as penecontemporaneous metamorphic belts of two contrasting types, one characterized by higher-pressure–lower-temperature metamorphism and the other characterized by higher-temperature–lower-pressure metamorphism. Granulite facies ultrahigh-temperature metamorphism (G-UHTM) is documented in the rock record predominantly from the Neoarchean to the Cambrian, although it may be inferred at depth in some younger Phanerozoic orogenic systems. Medium-temperature eclogite–high-pressure granulite metamorphism (E-HPGM) also is fi rst recognized in the Neoarchean, although well-characterized examples are rare in the Neoarchean-to-Paleoproterozoic transition, and occurs at intervals throughout the Proterozoic and Paleozoic rock record. The fi rst appearance of E-HPGM belts in the rock record registers a change in geodynamics that generated sites of lower heat fl ow than previously seen, inferred to be associated with subduction-to-collision orogenesis. The appearance of coeval G-UHTM belts in the rock record registers contemporary sites of high heat fl ow, inferred to be similar to modern arcs, abd backarcs, or orogenic hinterlands, where more extreme temperatures were imposed on crustal rocks than previously recorded. Blueschists fi rst became evident in the Neoproterozoic rock record, and lawsonite blueschists, low-temperature eclogites (high-pressure metamorphism, HPM), and ultrahigh-pressure metamorphism (UHPM) characterized by coesite or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers low to intermediate apparent thermal gradients typically associated with modern subduction zones and the eduction of deeply subducted lithosphere, including the eduction of continental crust subducted during the early stage of the collision process in subduction-to-collision orogenesis. During the Phanerozoic, most UHPM belts have developed by closure of relatively short-lived ocean basins that opened due to rearrangement of the continental lithosphere within a continent-dominated hemisphere as Eurasia was formed from Rodinian orphans and joined with Gondwana in Pangea,
منابع مشابه
Geodynamic Regimes and Tectonic Settings for Metamorphism: Relationship to the Supercontinent Cycle
Metamorphism associated with orogenesis provides a mineral record that may be inverted to yield ambient apparent thermal gradients. On modern Earth, tectonic settings with lower thermal gradients are characteristic of subduction zones whereas those with higher thermal gradients are characteristic of backarcs and orogenic hinterlands. The duality of thermal environments reflects the asymmetry of...
متن کاملWhen and how did plate tectonics begin? Theoretical and empirical considerations
Plate tectonics is the horizontal motion of Earth’s thermal boundary layer (lithosphere) over the convecting mantle (asthenosphere) and is mostly driven by lithosphere sinking in subduction zones. Plate tectonics is an outstanding example of a self organizing, far from equilibrium complex system (SOFFECS), driven by the negative buoyancy of the thermal boundary layer and controlled by dissipati...
متن کاملEvidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time
Earth is the only known planet with subduction zones and plate tectonics, and this fact demonstrates that special conditions are required for this mode of planetary heat loss. Sinking of cold, dense lithosphere in subduction zones is the principal plate-driving force, so plate tectonics could not have begun until Earth cooled sufficiently to allow lithosphere to collapse into the underlying ast...
متن کاملArchean Geodynamics and the Thermal Evolution of Earth
Possible geodynamic regimes that may have prevailed in the Archean are investigated by back-tracking the thermal history of Earth from the present-day conditions. If the temporal evolution of plate-tectonic convection is modulated by strong depleted lithosphere created at mid-ocean ridges, more sluggish plate tectonics is predicted when the mantle was hotter, contrary to commonly believed, more...
متن کاملPaired metamorphic belts revisited
a r t i c l e i n f o Keywords: Eclogite HP granulite Paired metamorphic belts UHPM UHTM The modern plate tectonics regime is characterized by a duality of thermal environments, one representing the subduction zone and the other representing the arc–backarc or orogenic hinterland. This duality is the hallmark of one-sided (asymmetric) subduction, and the characteristic imprint of one-sided subd...
متن کامل