Multiwavelets for Second-kind Integral Equations
نویسندگان
چکیده
Abstract. We consider a Galerkin method for an elliptic pseudodifferential operator of order zero on a two-dimensional manifold. We use piecewise linear discontinuous trial functions on a triangular mesh and describe an orthonormal wavelet basis. Using this basis we can compress the stiffness matrix from N to O(N logN) nonzero entries and still obtain (up to logN terms) the same convergence rates as for the exact Galerkin method.
منابع مشابه
Wavelet Galerkin methods for second-kind integral equations
We use vector-valued multiwavelets on compact sets to develop a Galerkin method for systems of integral equations of the second kind. We propose a compression strategy for the coeflieient matrix of the linear system obtained from this method and show that the compressed scheme preserves almost optimal convergence rate of the original scheme and yields a sparse matrix with a bounded condition nu...
متن کاملA new method for solving two-dimensional fuzzy Fredholm integral equations of the second kind
In this work, we introduce a novel method for solving two-dimensional fuzzy Fredholm integral equations of the second kind (2D-FFIE-2). We use new representation of parametric form of fuzzy numbers and convert a two-dimensional fuzzy Fredholm integral equation to system of two-dimensional Fredholm integral equations of the second kind in crisp case. We can use Adomian decomposition method for n...
متن کاملVARIATIONAL ITERATION METHOD FOR FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND
In this paper, He‘s variational iteration method is applied to Fredholm integral equations of the second kind. To illustrate the ability and simplicity of the method, some examples are provided. The results reveal that the proposed method is very effective and simple and for first fourth examples leads to the exact solution.
متن کاملEvaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method
In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...
متن کاملEvaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method
In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...
متن کامل