Alkali metal complexes of the dipeptides PheAla and AlaPhe: IRMPD spectroscopy.

نویسندگان

  • Nick C Polfer
  • Jos Oomens
  • Robert C Dunbar
چکیده

Complexes of PheAla and AlaPhe with alkali metal ions Na(+) and K(+) are generated by electrospray ionization, isolated in the Fourier-transform ion cyclotron resonance (FT-ICR) ion trapping mass spectrometer, and investigated by infrared multiple-photon dissociation (IRMPD) using light from the FELIX free electron laser over the mid-infrared range from 500 to 1900 cm(-1). Insight into structural features of the complexes is gained by comparing the obtained spectra with predicted spectra and relative free energies obtained from DFT calculations for candidate conformers. Combining spectroscopic and energetic results establishes that the metal ion is always chelated by the amide carbonyl oxygen, whilst the C-terminal hydroxyl does not complex the metal ion and is in the endo conformation. It is also likely that the aromatic ring of Phe always chelates the metal ion in a cation-pi binding configuration. Along with the amide CO and ring chelation sites, a third Lewis-basic group almost certainly chelates the metal ion, giving a threefold chelation geometry. This third site may be either the C-terminal carbonyl oxygen, or the N-terminal amino nitrogen. From the spectroscopic and computational evidence, a slight preference is given to the carbonyl group, in an RO(a)O(t) chelation pattern, but coordination by the amino group is almost equally likely (particularly for K(+)PheAla) in an RO(a)N(t) chelation pattern, and either of these conformations, or a mixture of them, would be consistent with the present evidence. (R represents the pi ring site, O(a) the amide oxygen, O(t) the terminal carbonyl oxygen, and N(t) the terminal nitrogen.) The spectroscopic findings are in better agreement with the MPW1PW91 DFT functional calculations of the thermochemistry compared with the B3LYP functional, which seems to underestimate the importance of the cation-pi interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IRMPD action spectroscopy of alkali metal cation-cytosine complexes: effects of alkali metal cation size on gas phase conformation.

The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000-1900 cm(-1). The IRMPD spectra of t...

متن کامل

IRMPD spectroscopy of metal-ion/tryptophan complexes.

Infrared multiple-photon dissociation (IRMPD) spectroscopy is employed to obtain detailed binding information on singly charged silver and alkali metal-ion/tryptophan complexes in the gas phase. For these complexes the presence of the salt bridge (i.e. zwitterionic) tautomer can be virtually excluded, except for perhaps a few percent in the case of Li+. Two low-energy structures having the char...

متن کامل

IRMPD spectroscopy of metal-ion/tryptophan complexesw

Infrared multiple-photon dissociation (IRMPD) spectroscopy is employed to obtain detailed binding information on singly charged silver and alkali metal-ion/tryptophan complexes in the gas phase. For these complexes the presence of the salt bridge (i.e. zwitterionic) tautomer can be virtually excluded, except for perhaps a few percent in the case of Li. Two low-energy structures having the charg...

متن کامل

Effects of alkaline earth metal ion complexation on amino acid zwitterion stability: results from infrared action spectroscopy.

The structures of isolated alkaline earth metal cationized amino acids are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and theory. These results indicate that arginine, glutamine, proline, serine, and valine all adopt zwitterionic structures when complexed with divalent barium. The IRMPD spectra for these ions exhibit bands assigned to carboxylate stretching mo...

متن کامل

IRMPD Spectroscopy of Metalated Flavins: Structure and Bonding of Lumiflavin Complexes with Alkali and Coinage Metal Ions.

Flavins are a fundamental class of biomolecules, whose photochemical properties strongly depend on their environment and their redox and metalation state. Infrared multiphoton dissociation (IRMPD) spectra of mass selected isolated metal-lumiflavin ionic complexes (M+LF) are analyzed in the fingerprint range (800-1830 cm-1) to determine the bonding of lumiflavin with alkali (M=Li, Na, K, Cs) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemphyschem : a European journal of chemical physics and physical chemistry

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 2008